{ "cells": [ { "cell_type": "code", "execution_count": null, "id": "2789b6b6", "metadata": { "tags": [ "hide-input" ] }, "outputs": [], "source": [ "# Install the necessary dependencies\n", "\n", "import os\n", "import sys\n", "!{sys.executable} -m pip install --quiet pandas scikit-learn numpy matplotlib jupyterlab_myst ipython seaborn" ] }, { "cell_type": "markdown", "id": "9c151ff7", "metadata": { "tags": [ "remove-cell" ] }, "source": [ "---\n", "license:\n", " code: MIT\n", " content: CC-BY-4.0\n", "github: https://github.com/ocademy-ai/machine-learning\n", "venue: By Ocademy\n", "open_access: true\n", "bibliography:\n", " - https://raw.githubusercontent.com/ocademy-ai/machine-learning/main/open-machine-learning-jupyter-book/references.bib\n", "---" ] }, { "cell_type": "markdown", "id": "f13f3d0d", "metadata": {}, "source": [ "# Logistic regression\n", "\n", ":::{figure} https://static-1300131294.cos.ap-shanghai.myqcloud.com/images/ml-regression/logistic-linear.png\n", "---\n", "name: 'Logistic vs. linear regression infographic'\n", "width: 100%\n", "---\n", "Logistic regression to predict categories. Infographic by [Dasani Madipalli](https://twitter.com/dasani_decoded)\n", ":::" ] }, { "cell_type": "markdown", "id": "6763f160", "metadata": {}, "source": [ "

\n", "\n", "A demo of logistic-regression. [source]\n", "

" ] }, { "cell_type": "markdown", "id": "47b25fce", "metadata": {}, "source": [ "## Introduction\n", "\n", "In this final section on Regression, one of the basic _classic_ Machine Learning techniques, we will take a look at Logistic Regression. You would use this technique to discover patterns to predict binary categories. Is this candy chocolate or not? Is this disease contagious or not? Will this customer choose this product or not?\n", "\n", "In this section, you will learn:\n", "\n", "- A new library for data visualization\n", "- Techniques for logistic regression\n", "\n", ":::{seealso}\n", "Deepen your understanding of working with this type of regression in this [Learn module](https://docs.microsoft.com/learn/modules/train-evaluate-classification-models?WT.mc_id=academic-77952-leestott)\n", ":::" ] }, { "cell_type": "markdown", "id": "ef6f3c62", "metadata": {}, "source": [ "## Prerequisite\n", "\n", "Having worked with the pumpkin data, we are now familiar enough with it to realize that there's one binary category that we can work with: `Color`.\n", "\n", "Let's build a logistic regression model to predict that, given some variables, _what color a given pumpkin is likely to be_ (orange 🎃 or white 👻).\n", "\n", ":::{note}\n", "Why are we talking about binary classification in a section grouping about regression? Only for linguistic convenience, as logistic regression is [really a classification method](https://scikit-learn.org/stable/modules/linear_model.html#logistic-regression), albeit a linear-based one. Learn about other ways to classify data in the next lesson group.\n", ":::" ] }, { "cell_type": "markdown", "id": "cb63989b", "metadata": {}, "source": [ "## Define the question\n", "\n", "For our purposes, we will express this as a binary: 'Orange' or 'Not Orange'. There is also a 'striped' category in our dataset but there are few instances of it, so we will not use it. It disappears once we remove null values from the dataset, anyway.\n", "\n", ":::{seealso}\n", "Fun fact, we sometimes call white pumpkins 'ghost' pumpkins. They aren't very easy to carve, so they aren't as popular as the orange ones but they are cool looking!\n", ":::" ] }, { "cell_type": "markdown", "id": "97e9cb2d", "metadata": {}, "source": [ "## About logistic regression\n", "\n", "Logistic regression differs from linear regression, which you learned about previously, in a few important ways." ] }, { "cell_type": "markdown", "id": "3c1e1c2a", "metadata": {}, "source": [ "### Binary classification\n", "\n", "Logistic regression does not offer the same features as linear regression. The former offers a prediction about a binary category (\"orange or not orange\") whereas the latter is capable of predicting continual values, for example given the origin of a pumpkin and the time of harvest, _how much its price will rise_.\n", "\n", ":::{figure} https://static-1300131294.cos.ap-shanghai.myqcloud.com/images/ml-regression/pumpkin-classifier.png\n", "---\n", "name: 'Pumpkin classification Model'\n", "width: 100%\n", "---\n", "Infographic by [Dasani Madipalli](https://twitter.com/dasani_decoded)\n", ":::" ] }, { "cell_type": "markdown", "id": "3d9f3190", "metadata": {}, "source": [ "### Other classifications\n", "\n", "There are other types of logistic regression, including multinomial and ordinal:\n", "\n", "- **Multinomial**, which involves having more than one category - \"Orange, White, and Striped\".\n", "- **Ordinal**, which involves ordered categories, useful if we wanted to order our outcomes logically, like our pumpkins that are ordered by a finite number of sizes (mini, sm, med, lg, xl, xxl).\n", "\n", ":::{figure} https://static-1300131294.cos.ap-shanghai.myqcloud.com/images/ml-regression/multinomial-ordinal.png\n", "---\n", "name: 'Multinomial vs ordinal regression'\n", "width: 100%\n", "---\n", "Infographic by [Dasani Madipalli](https://twitter.com/dasani_decoded)\n", ":::" ] }, { "cell_type": "markdown", "id": "bc7a6521", "metadata": {}, "source": [ "### It's still linear\n", "\n", "Even though this type of Regression is all about 'category predictions', it still works best when there is a clear linear relationship between the dependent variable (color) and the other independent variables (the rest of the dataset, like city name and size). It's good to get an idea of whether there is any linearity dividing these variables or not." ] }, { "cell_type": "markdown", "id": "12889962", "metadata": {}, "source": [ "### Variables DO NOT have to correlate\n", "\n", "Remember how linear regression worked better with more correlated variables? Logistic regression is the opposite - the variables don't have to align. That works for this data which has somewhat weak correlations." ] }, { "cell_type": "markdown", "id": "5d8e9e71", "metadata": {}, "source": [ "### You need a lot of clean data\n", "\n", "Logistic regression will give more accurate results if you use more data; our small dataset is not optimal for this task, so keep that in mind.\n", "\n", ":::{note}\n", "Think about the types of data that would lend themselves well to logistic regression.\n", ":::" ] }, { "cell_type": "markdown", "id": "ec33d95b", "metadata": {}, "source": [ "## Exercise - tidy the data\n", "\n", "First, clean the data a bit, dropping null values and selecting only some of the columns:\n", "\n", "1. Add the following code:" ] }, { "cell_type": "code", "execution_count": 2, "id": "0606f3cb", "metadata": { "attributes": { "classes": [ "code-cell" ], "id": "" }, "tags": [ "output-scoll" ] }, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
City NameTypePackageVarietySub VarietyGradeDateLow PriceHigh PriceMostly Low...Unit of SaleQualityConditionAppearanceStorageCropRepackTrans ModeUnnamed: 24Unnamed: 25
0BALTIMORENaN24 inch binsNaNNaNNaN4/29/17270.0280.0270.0...NaNNaNNaNNaNNaNNaNENaNNaNNaN
1BALTIMORENaN24 inch binsNaNNaNNaN5/6/17270.0280.0270.0...NaNNaNNaNNaNNaNNaNENaNNaNNaN
2BALTIMORENaN24 inch binsHOWDEN TYPENaNNaN9/24/16160.0160.0160.0...NaNNaNNaNNaNNaNNaNNNaNNaNNaN
3BALTIMORENaN24 inch binsHOWDEN TYPENaNNaN9/24/16160.0160.0160.0...NaNNaNNaNNaNNaNNaNNNaNNaNNaN
4BALTIMORENaN24 inch binsHOWDEN TYPENaNNaN11/5/1690.0100.090.0...NaNNaNNaNNaNNaNNaNNNaNNaNNaN
\n", "

5 rows × 26 columns

\n", "
" ], "text/plain": [ " City Name Type Package Variety Sub Variety Grade Date \\\n", "0 BALTIMORE NaN 24 inch bins NaN NaN NaN 4/29/17 \n", "1 BALTIMORE NaN 24 inch bins NaN NaN NaN 5/6/17 \n", "2 BALTIMORE NaN 24 inch bins HOWDEN TYPE NaN NaN 9/24/16 \n", "3 BALTIMORE NaN 24 inch bins HOWDEN TYPE NaN NaN 9/24/16 \n", "4 BALTIMORE NaN 24 inch bins HOWDEN TYPE NaN NaN 11/5/16 \n", "\n", " Low Price High Price Mostly Low ... Unit of Sale Quality Condition \\\n", "0 270.0 280.0 270.0 ... NaN NaN NaN \n", "1 270.0 280.0 270.0 ... NaN NaN NaN \n", "2 160.0 160.0 160.0 ... NaN NaN NaN \n", "3 160.0 160.0 160.0 ... NaN NaN NaN \n", "4 90.0 100.0 90.0 ... NaN NaN NaN \n", "\n", " Appearance Storage Crop Repack Trans Mode Unnamed: 24 Unnamed: 25 \n", "0 NaN NaN NaN E NaN NaN NaN \n", "1 NaN NaN NaN E NaN NaN NaN \n", "2 NaN NaN NaN N NaN NaN NaN \n", "3 NaN NaN NaN N NaN NaN NaN \n", "4 NaN NaN NaN N NaN NaN NaN \n", "\n", "[5 rows x 26 columns]" ] }, "execution_count": 2, "metadata": {}, "output_type": "execute_result" } ], "source": [ "import pandas as pd\n", "import numpy as np\n", "\n", "pumpkins = pd.read_csv('https://static-1300131294.cos.ap-shanghai.myqcloud.com/data/us-pumpkins.csv')\n", "pumpkins.head()" ] }, { "cell_type": "code", "execution_count": 3, "id": "02ddd859", "metadata": { "attributes": { "classes": [ "code-cell" ], "id": "" } }, "outputs": [], "source": [ "from sklearn.preprocessing import LabelEncoder\n", "\n", "new_columns = ['Color','Origin','Item Size','Variety','City Name','Package']\n", "\n", "new_pumpkins = pumpkins.drop([c for c in pumpkins.columns if c not in new_columns], axis=1)\n", "\n", "new_pumpkins.dropna(inplace=True)\n", "\n", "new_pumpkins = new_pumpkins.apply(LabelEncoder().fit_transform)" ] }, { "cell_type": "markdown", "id": "c3dd707a", "metadata": {}, "source": [ "You can always take a peek at your new dataframe:" ] }, { "cell_type": "code", "execution_count": 4, "id": "f73a80de", "metadata": { "attributes": { "classes": [ "code-cell" ], "id": "" } }, "outputs": [ { "data": { "text/plain": [ "" ] }, "execution_count": 4, "metadata": {}, "output_type": "execute_result" } ], "source": [ "new_pumpkins.info" ] }, { "cell_type": "markdown", "id": "145468f2", "metadata": {}, "source": [ "### Visualization - side-by-side grid\n", "\n", "By now you have loaded up the [starter notebook](../../assignments/ml-fundamentals/pumpkin-varieties-and-color.ipynb) with pumpkin data once again and cleaned it so as to preserve a dataset containing a few variables, including `Color`. Let's visualize the dataframe in the notebook using a different library: [Seaborn](https://seaborn.pydata.org/index.html), which is built on Matplotlib which we used earlier.\n", "\n", "Seaborn offers some neat ways to visualize your data. For example, you can compare distributions of the data for each point in a side-by-side grid.\n", "\n", "1. Create such a grid by instantiating a `PairGrid`, using our pumpkin data `new_pumpkins`, followed by calling `map()`:" ] }, { "cell_type": "code", "execution_count": 5, "id": "08b59d95", "metadata": { "attributes": { "classes": [ "code-cell" ], "id": "" } }, "outputs": [ { "data": { "text/plain": [ "" ] }, "execution_count": 5, "metadata": {}, "output_type": "execute_result" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAABboAAAW+CAYAAACh8JYCAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8o6BhiAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOzdfXxcdZ33/3dgkkySZqYxoZU2pbKmsgukUEBUiF26siCCSkRQF/fBjY96KaIIP70gRUBdeqfIVr1cbrzBuguLXItV9FpwV0SgeAOC0Los2KhX27RSSJzOmWQyuWnn9wdXQ0omc3fmO9/znfN6Ph55aOfMOd/P93s+nzMnHyYzddlsNisAAAAAAAAAABx1iO0AAAAAAAAAAADwg0Y3AAAAAAAAAMBpNLoBAAAAAAAAAE6j0Q0AAAAAAAAAcBqNbgAAAAAAAACA02h0AwAAAAAAAACcRqMbAAAAAAAAAOC00DW6s9msPM9TNpu1HQqAIlCzgHuoW8At1CzgFmoWcAs1C1RP6BrdqVRK8XhcqVTKdigAikDNAu6hbgG3ULOAW6hZwC3ULFA9oWt0AwAAAAAAAABqC41uAAAAAAAAAIDTaHQDAAAAAAAAAJxGoxsAAAAAAAAA4DQa3QAAAAAAAAAAp0VsBzDdI488oi9+8Yt68skn9ac//UmbNm3SueeeK0mamJjQZz7zGf37v/+7/vCHPygej+v000/XunXrtGDBAruBA44bSKSVykzKG51QvKlec6IRdbY12w4LDrCZO+QtUDqTdUNNIkhcy0fX4gWCynYt2R4/zFxee5djB8plKu8D1egeGRnRcccdp0svvVTvec97DtqWTqf11FNP6brrrtNxxx2nRCKhK664Qu9617v061//2lLEgPu2D41o1aateqx/aOqxnq52re7t1uL2FouRIehs5g55C5TOZN1QkwgS1/LRtXiBoLJdS7bHDzOX197l2IFymcz7umw2m/UboAl1dXUHvaM7lyeeeEInn3yytm/friOOOKKo43qep3g8rmQyqVgsVqFoATcNJNK6+t4tB11cDujpate685Za/y/J1Gww2cwdF/I27Kjb4DFZN9Sk+2qpZl3LR9fiRTDUUs1Wiu1asj1+mLmw9rPVrAuxA5VmOu8D9Y7uUiWTSdXV1Wnu3LmzPmdsbExjY2NT//Y8rwqRAW5IZSZzXlwkaXP/kFKZySpHRM26wmbuBDFvw466DT6TdUNNuqeWa9a1fHQtXthRyzVbKbZryfb4YRbEtS+2ZoMYO2Ca6bx39ssoM5mMrr76an3gAx/I+1+x165dq3g8PvWzaNGiKkYJBJs3OpF3eyqTf7sJ1KwbbOZOEPM27Kjb4DNZN9Ske2q5Zl3LR9fihR21XLOVYruWbI8fZkFc+2JrNoixA6aZznsnG90TExO64IILlM1mdcstt+R9bl9fn5LJ5NTPzp07qxQlEHyxpvq821uj+bebQM26wWbuBDFvw466DT6TdUNNuqeWa9a1fHQtXthRyzVbKbZryfb4YRbEtS+2ZoMYO2Ca6bx3rtF9oMm9fft2/ed//mfBzyRrbGxULBY76AfAy1qjEfV0tefc1tPVrtZo9T/diJp1g83cCWLehh11G3wm64aadE8t16xr+ehavLCjlmu2UmzXku3xwyyIa19szQYxdsA003nvVKP7QJN727Zt+slPfqL29twLA6A4nW3NWt3bPeMic+DbbvniC8zGZu6Qt0DpTNYNNYkgcS0fXYsXCCrbtWR7/DBzee1djh0ol+m8r8tms1lfR6ig4eFh9ff3S5KWLVumm2++WStWrNBrXvMaHX744Xrve9+rp556Sj/60Y80f/78qf1e85rXqKGhoagx+IZqYKaBRFqpzKRSmQm1RuvVGo0E5kWVmg02m7kT5LwNO+o2uEzWDTXprlqsWdfy0bV4YVct1myl2K4l2+OHWZDXvlDNBjl2wBRTeR+oRvfPfvYzrVixYsbjF110kT772c/qyCOPzLnfQw89pNNOO62oMbgpANxCzQLuoW4Bt1CzgFuoWcAt1CxQPYH6wJ/TTjtN+fruAerJAwAAAAAAAAACwqnP6AYAAAAAAAAA4NVodAMAAAAAAAAAnEajGwAAAAAAAADgNBrdAAAAAAAAAACn0egGAAAAAAAAADiNRjcAAAAAAAAAwGkR2wEA8G8gkVYqMylvdELxpnrNiUbU2dZsOyyEgM3cI++B0lE3MI0cA7DHyygxMi4vM6lYU0RtzQ2aH4tWZWzb1yDb49tke+67944qOToxNX6sqV4L5jZVbXw/bK8dUEtodAOO2z40olWbtuqx/qGpx3q62rW6t1uL21ssRoZaZzP3yHugdNQNTCPHAOwYGlFfjuvAmt5uHVHj94e2x7fJ9txtj++Hy7EDQcRHlwAOG0ikZ7woStLm/iFdu2mrBhJpS5Gh1tnMPfIeKB11A9PIMQB7vMyMJrf08nVg1aat2uNljI1t+xpke3ybbM99997RvOPv3jtqdHw/bK8dUItodAMOS2UmZ7woHrC5f0ipzGSVI0JY2Mw98h4oHXUD08gxAImR8bzXgcTIuLGxbV+DbI9vk+25J0cn8o6fHJ0wOr4fttcOqEU0ugGHeQVetFOZ4L6ow202c4+8B0pH3cA0cgyAV6ApV2i7r7EtX4Nsj2+T7bnbHt8Pl2MHgopGN+CwWFN93u2t0fzbgXLZzD3yHigddQPTyDEAsWj+rwArtN3X2JavQbbHt8n23G2P74fLsQNBRaMbcFhrNKKervac23q62tVq8GYS4WYz98h7oHTUDUwjxwC0tTTkvQ60tTQYG9v2Ncj2+DbZnnu8qT7v+PECzWSbbK8dUItodAMO62xr1ure7hkvjge+pbmzrdlSZKh1NnOPvAdKR93ANHIMwPxYVGtmuQ6s6e3W/FjU2Ni2r0G2x7fJ9twXzG3KO/6CuU1Gx/fD9toBtagum81mbQdRTZ7nKR6PK5lMKhaL2Q4HqIiBRFqpzKRSmQm1RuvVGo3UzIsiNRtsNnOvlvPeddRtcFE3yKWSNUuOAeYF/XV2j5dRYmRcXmZSsWhEbS0NRpvc09m+Btke3ybbc9+9d1TJ0Ymp8eNN9YFpcheqWdtrB9QS/g4CqAG8CMIWm7lH3gOlo25gGjkGYH4sWrXG9qvZvgbZHt8m23NfMLcpMI3tUtleO6CW8NElAAAAAAAAAACn0egGAAAAAAAAADiNRjcAAAAAAAAAwGk0ugEAAAAAAAAATqPRDQAAAAAAAABwGo1uAAAAAAAAAIDTIrYDmO6RRx7RF7/4RT355JP605/+pE2bNuncc8+d2p7NZnXDDTfo61//uvbu3atTTz1Vt9xyi5YsWWIvaKACBhJppTKT8kYnFG+q15xoRJ1tzbbDAgpKpsc1ODwuLzOhWFO9OloaFG9uqMrY1A1QOuoGLtuVSMublr+t0YgWhjB/S6nj3XtHlRydmHpurKleC+Y2VTlirj2oHtu5ZnN823O3+XtBEMb3w/a5A2pJoBrdIyMjOu6443TppZfqPe95z4ztX/jCF/SVr3xFGzdu1JFHHqnrrrtOZ555pp599llFo1ELEQP+bR8a0apNW/VY/9DUYz1d7Vrd263F7S0WIwPy2713VFffu0WPbhucemz5kg6tO2+p8V+iqRugdNQNXEb+vqyUdQjKmgUlDtQ+27lmc3zbc7f5e0EQxvfD9rkDak2gPrrkrLPO0o033qje3t4Z27LZrDZs2KDPfOYzeve7362lS5fqO9/5jnbv3q3vf//71Q8WqICBRHrGi5okbe4f0rWbtmogkbYUGZBfMj0+42ZSkh7ZNqhr7t2iZHrc2NjUDVA66gYu21Ugf3eFJH9LqePde0fzPnf33tHAxQz4YTvXbI5ve+42fy8Iwvh+2D53QC0K1Du68/njH/+oF154QaeffvrUY/F4XG9605v0i1/8Qu9///tz7jc2NqaxsbGpf3ueZzxWoFipzOSMF7UDNvcPKZWZrHJE9lGzbhgcHp9xM3nAI9sGNTg8buxPBamb4KFug4+6wXSu1axXIH+9zKQWVjkmG0qp4+ToRN7nJkcnqvIuR649leFazdpgO9dsjm977jZ/LwjC+LkUW7O2zx1QiwL1ju58XnjhBUnS/PnzD3p8/vz5U9tyWbt2reLx+NTPokWLjMYJlMIbnci7PZXJv70WUbNu8ArkpsncpW6Ch7oNPuoG07lWs+Tvy0pZh6CsWVDicJ1rNWuD7VyzOb71uVv8vSAI4+dSbM3aPndALXKm0V2uvr4+JZPJqZ+dO3faDgmYEmuqz7u9NZp/ey2iZt0QK5CbJnOXugke6jb4qBtM51rNkr8vK2UdgrJmQYnDda7VrA22c83m+NbnbvH3giCMn0uxNWv73AG1yJlG92tf+1pJ0p49ew56fM+ePVPbcmlsbFQsFjvoBwiK1mhEPV3tObf1dLWrNerMpwtVDDXrho45DVq+pCPntuVLOtQxx9yfB1I3wUPdBh91g+lcq9lYgfyNhSR/S6njeFN93ufGCzRXKoVrT2W4VrM22M41m+PbnrvN3wuCMH4uxdas7XMH1CJnGt1HHnmkXvva1+rBBx+ceszzPP3qV7/SW97yFouRAeXrbGvW6t7uGS9uB75lubOt2VJkQH7x5gatO2/pjJvK5Us6tP68pUY/B4+6AUpH3cBlCwvk78KQ5G8pdbxgblPe51bj87lLjRnww3au2Rzf9txt/l4QhPH9sH3ugFpUl81ms7aDOGB4eFj9/f2SpGXLlunmm2/WihUr9JrXvEZHHHGE1q9fr3Xr1mnjxo068sgjdd1112nLli169tlnFY1GixrD8zzF43Elk0n+SzgCYyCRViozqVRmQq3RerVGI7yo/T/UbLAl0+MaHB6fyt2OOQ1Vu5mkboKLug0u6ga5uFKzuxJpedPyNxaNhKbJPV0pdbx776iSoxNTz4031VetyT0d157KcqVmbbCdazbHtz13m78XBGH8fArVrO1zB9SSQP0dxK9//WutWLFi6t9XXXWVJOmiiy7St7/9bf3P//k/NTIyog9/+MPau3evenp69MADDxTd5AaCihcxuCrebO8GkroBSkfdwGUL25q10HYQAVBKHS+Y22Slsf1qXHtQLbZzzeb4tudu8/eCIIzvh+1zB9SSQDW6TzvtNOV7g3ldXZ0+//nP6/Of/3wVowIAAAAAAAAABJkzn9ENAAAAAAAAAEAuNLoBAAAAAAAAAE6j0Q0AAAAAAAAAcBqNbgAAAAAAAACA02h0AwAAAAAAAACcRqMbAAAAAAAAAOC0iO0AgFoxkEgrlZmUNzqheFO95kQj6mxrth0WapztvLM5vu25Ay6ibmZncm1YdxRSSo6Yem5QYgb8sJ1ryfS4BofH5WUmFGuqV0dLg+LNDVUZe4+XUWJkXF5mUrGmiNqaGzQ/Fq3K2JL9tbc9vh8uxw6Uy1Te0+gGKmD70IhWbdqqx/qHph7r6WrX6t5uLW5vsRgZapntvLM5vu25Ay6ibmZncm1YdxRSSo6Yem5QYgb8sJ1ru/eO6up7t+jRbYNTjy1f0qF15y3VgrlNRsfeMTSivhxzX9PbrSNq/PeCIIzvh8uxA+Uymfd8dAng00AiPaNAJWlz/5Cu3bRVA4m0pchQy2znnc3xbc8dcBF1MzuTa8O6o5BScsTUc4MSM+CH7VxLpsdnNLkl6ZFtg7rm3i1KpseNjb3Hy8xocksvz33Vpq3a42WMjS3ZX3vb4/vhcuxAuUznPY1uwKdUZnJGgR6wuX9IqcxklSNCGNjOO5vj25474CLqZnYm14Z1RyGl5Iip5wYlZsAP27k2ODw+o8l9wCPbBjU4bK7RnRgZzzv3xIi5sSX7a297fD9cjh0ol+m8p9EN+OSNTuTdnsrk3w6Uw3be2Rzf9twBF1E3szO5Nqw7CiklR0w9t1RBiQOYznaueQWOb/TeuEBTqNB23+PbXnuHrzMuxw6Uy3Te0+gGfIo11efd3hrNvx0oh+28szm+7bkDLqJuZmdybVh3FFJKjph6bqmCEgcwne1cixU4vtF742j+r14rtN33+LbX3uHrjMuxA+Uynfc0ugGfWqMR9XS159zW09WuVsM3Fggn23lnc3zbcwdcRN3MzuTasO4opJQcMfXcoMQM+GE71zrmNGj5ko6c25Yv6VDHnAZjY7e1NOSde1uLubEl+2tve3w/XI4dKJfpvKfRDfjU2das1b3dMwr1wDfGdrY1W4oMtcx23tkc3/bcARdRN7MzuTasOwopJUdMPTcoMQN+2M61eHOD1p23dEaze/mSDq0/b6nizeaazfNjUa2ZZe5rers1PxY1NrZkf+1tj++Hy7ED5TKd93XZbDbr6wiO8TxP8XhcyWRSsVjMdjioIQOJtFKZSaUyE2qN1qs1GuGFqQKo2fxs553N8W3PHbOjboOLupmdybUJ+rpTs/aVkiOmnhuUmFEYNTs727mWTI9rcHh8avyOOQ1Gm9zT7fEySoyMy8tMKhaNqK2lwXiTezrba297/HwK1WyQYwdMMZX3NLoBBBo1C7iHugXcQs0CbqFmAbdQs0D18NElAAAAAAAAAACn0egGAAAAAAAAADiNRjcAAAAAAAAAwGk0ugEAAAAAAAAATqPRDQAAAAAAAABwGo1uAAAAAAAAAIDTIrYDKNW+ffv02c9+Vv/yL/+iF154QQsWLNDFF1+sz3zmM6qrq7MdHhy2x8soMTIuLzOpWFNEbc0Nmh+L2g4LwCyoWaB01A0QTNQmakkyPa7B4XF5mQnFmurV0dKgeHNDzY8NlIvXAKBynGt0r1+/Xrfccos2btyoY445Rr/+9a91ySWXKB6P6xOf+ITt8OCoHUMj6tu0VY/1D0091tPVrjW93TqivcViZAByoWaB0lE3QDBRm6glu/eO6up7t+jRbYNTjy1f0qF15y3VgrlNNTs2UC5eA4DKquhHl2QymUoeLqef//zneve7362zzz5br3vd6/Te975XZ5xxhh5//HHjY6M27fEyM15YJGlz/5BWbdqqPZ75vAZQPGoWKB11AwQTtYlakkyPz2g0S9Ij2wZ1zb1blEyP1+TYQLl4DQAqz3eje//+/fqHf/gHLVy4UHPmzNEf/vAHSdJ1112nb37zm74DfLVTTjlFDz74oH73u99Jkp555hlt3rxZZ511Vs7nj42NyfO8g36A6RIj4zNeWA7Y3D+kxAg3RdVEzaIQajZ4qNvgo24wHTUbHNQmiuFKzQ4Oj89oNB/wyLZBDQ6by2ebYwOvVmzN8hoAVJ7vRveNN96ob3/72/rCF76ghoZXPvvq2GOP1Te+8Q2/h5/hmmuu0fvf/3795V/+perr67Vs2TJ98pOf1IUXXpjz+WvXrlU8Hp/6WbRoUcVjgtu8zKSv7agsahaFULPBQ90GH3WD6ajZ4KA2UQxXatbLTOTdniqw3dWxgVcrtmZ5DQAqz3ej+zvf+Y5uv/12XXjhhTr00EOnHj/uuOP03HPP+T38DPfcc4/uvPNO3XXXXXrqqae0ceNG3XTTTdq4cWPO5/f19SmZTE797Ny5s+IxwW2xaP6Pqi+0HZVFzaIQajZ4qNvgo24wHTUbHNQmiuFKzcai9Xm3txbY7urYwKsVW7O8BgCV57tqdu3apa6urhmP79+/XxMTlf+vpp/+9Ken3tUtSd3d3dq+fbvWrl2riy66aMbzGxsb1djYWPE4UDvaWhrU09WuzTn+ZKinq11tLXxLdzVRsyiEmg0e6jb4qBtMR80GB7WJYrhSsx1zGrR8SYceyfERIsuXdKhjjrl8tjk28GrF1iyvAUDl+X5H99FHH61HH310xuP/9m//pmXLlvk9/AzpdFqHHHJw2Iceeqj2799f8bEQDvNjUa3p7VZPV/tBjx/4puP5sailyADkQs0CpaNugGCiNlFL4s0NWnfeUi1f0nHQ48uXdGj9eUsVbzbXtLM5NlAuXgOAyvP9ju7rr79eF110kXbt2qX9+/fre9/7np5//nl95zvf0Y9+9KNKxHiQd77znVq9erWOOOIIHXPMMfrNb36jm2++WZdeemnFx0J4HNHeoi9dcLwSI+PyMpOKRSNqa2nghQUIKGoWKB11AwQTtYlasmBuk776gWUaHB5XKjOh1mi9OuY0VKXRbHNsoFy8BgCVVZfNZrN+D/Loo4/q85//vJ555hkNDw/rhBNO0PXXX68zzjijEjEeJJVK6brrrtOmTZv04osvasGCBfrABz6g66+//qAvw5yN53mKx+NKJpOKxWIVjw9AZVGzgHuoW8At1CzgFmoWcAs1C1RPRRrdLuECA7iFmgXcQ90CbqFmAbdQs4BbqFmgeir6Fa7Dw8MzPiubIgYAAAAAAAAAmOT7yyj/+Mc/6uyzz1ZLS4vi8bja2trU1tamuXPnqq2trRIxAgAAAAAAAAAwK9/v6P7gBz+obDarb33rW5o/f77q6uoqERcAAAAAAAAAAEXx3eh+5pln9OSTT+qoo46qRDwAAAAAAAAAAJTE90eXvPGNb9TOnTsrEQsAAAAAAAAAACXz/Y7ub3zjG/rIRz6iXbt26dhjj1V9ff1B25cuXep3CKAoA4m0UplJeaMTijfVa040os62ZtthATXNZt3ZrvlkelyDw+PyMhOKNdWro6VB8eaGqo0PlMNk3diuSQQDeQDAJtvXIJvj2743tT2+y2znLWCDqbz33eh+6aWX9Pvf/16XXHLJ1GN1dXXKZrOqq6vTvn37/A4BFLR9aESrNm3VY/1DU4/1dLVrdW+3Fre3WIwMqF026852ze/eO6qr792iR7cNTj22fEmH1p23VAvmNhkfHyiHybqxXZMIBvIAgE22r0E2x7d9b2p7fJfZzlvABpN57/ujSy699FItW7ZMv/jFL/SHP/xBf/zjHw/6X8C0gUR6RoFI0ub+IV27aasGEmlLkQG1y2bd2a75ZHp8xo28JD2ybVDX3LtFyfS40fGBcpisG9s1iWAgDwDYZPsaZHN82/emtsd3me28BWwwnfe+39G9fft23Xffferq6vJ7KKAsqczkjAI5YHP/kFKZySpHBNQ+m3Vnu+YHh8dn3Mgf8Mi2QQ0Oj/Nnmggck3VjuyYRDOQBAJtsX4Nsjm/73tT2+C6znbeADabz3vc7uv/mb/5GzzzzjN/DAGXzRifybk9l8m8HUDqbdWe75r0Cx+eagyAyWTe2axLBQB4AsMn2NcjqvbHle1Pb47vMdt4CNpjOe9/v6H7nO9+pK6+8Ulu3blV3d/eML6N817ve5XcIIK9YU33e7a3R/NsBlM5m3dmu+ViB43PNQRCZrBvbNYlgIA8A2GT7GmT13tjyvant8V1mO28BG0znve93dH/kIx/RwMCAPv/5z+v888/XueeeO/XT29vr9/BAQa3RiHq62nNu6+lqV2vU93/PAfAqNuvOds13zGnQ8iUdObctX9Khjjn8aSaCx2Td2K5JBAN5AMAm29cgm+Pbvje1Pb7LbOctYIPpvPfd6N6/f/+sP/v27fN7eKCgzrZmre7tnlEoB76xtbOt2VJkQO2yWXe2az7e3KB15y2dcUO/fEmH1p+3lM8gRCCZrBvbNYlgIA8A2GT7GmRzfNv3prbHd5ntvAVsMJ33ddlsNuvrCI7xPE/xeFzJZFKxWMx2OKiggURaqcykUpkJtUbr1RqN8MJQA6jZYLNZd7ZrPpke1+Dw+NT4HXMauJH/f6jb4DJZN7ZrEuWrZM2SB4B5vM7OzvY1yOb4tu9NbY8fZIVq1nbeAjaYyvuK/B3EyMiIHn74Ye3YsUPj4+MHbfvEJz5RiSGAgnghAKrPZt3Zrvl4MzfvcI/pv7YAyAMANtm+Btkc3/a9qe3xXWY7bwEbTOW970b3b37zG73jHe9QOp3WyMiIXvOa12hwcFDNzc2aN28ejW4AAAAAAAAAgFG+P6P7yiuv1Dvf+U4lEgk1NTXpl7/8pbZv364TTzxRN910UyViBAAAAAAAAABgVr4b3U8//bT+v//v/9MhhxyiQw89VGNjY1q0aJG+8IUvaNWqVZWIEQAAAAAAAACAWfludNfX1+uQQ14+zLx587Rjxw5JUjwe186dO/0eHgAAAAAAAACAvHx/RveyZcv0xBNPaMmSJfrrv/5rXX/99RocHNQ///M/69hjj61EjAAAAAAAAAAAzMr3O7rXrFmjww8/XJK0evVqtbW16aMf/aheeukl3X777b4DBAAAAAAAAAAgH9/v6D7ppJOm/v+8efP0wAMP+D0kAAAAAAAAAABF893otmHXrl26+uqrdf/99yudTqurq0t33HHHQU13uGcgkVYqMylvdELxpnrNiUbU2dZsOyw4YPfeUSVHJ6ZyJ9ZUrwVzm2yHFQrULYAD9ngZJUbG5WUmFWuKqK25QfNjUdthBQLXShRCjgCVYbuWbP5eYvt12Pbau4y1QxiZumaV3ehesWKF6urq8j6nrq5ODz74YLlD5JRIJHTqqadqxYoVuv/++3XYYYdp27Ztamtrq+g4qK7tQyNatWmrHusfmnqsp6tdq3u7tbi9xWJkCDpyxx7WHsABO4ZG1JfjerCmt1tHhPx6wLUShZAjQGXYriWb49t+Hba99i5j7RBGJq9ZddlsNlvOjldeeeWs21KplO666y6NjY1p3759ZQeXyzXXXKPHHntMjz76aFn7e56neDyuZDKpWCxW0dhQnoFEWlffu+WgBD+gp6td685byn/NDLF8Nbt776g+/W/PzJo7X3jvcbyz2xDqFvnwWhsue7yMrrrn6VmvB1+64PjQvrPblWslNWuPKzmCYKFmZ7JdSzZ/L7H9Omx77V0wW82ydggj09esst/R/Y//+I8zHpucnNTXvvY1rV69WgsXLtQ//MM/lB3YbO677z6deeaZOv/88/Xwww9r4cKFuuyyy7Ry5cqczx8bG9PY2NjUvz3Pq3hM8CeVmcyZ4JK0uX9IqcxklSOCTaXUbHJ0Im/uJEcnaHQbQt1iOl5rwy0xMp73epAYGQ9tozuo10pqNjiCmiMIFmq2MNu1ZPP3Etuvw7bXPoiKrVnWDmFk+pp1SNl7vsqdd96po446SuvXr9dnP/tZ/fd//7fe//73V+rwU/7whz/olltu0ZIlS/TjH/9YH/3oR/WJT3xCGzduzPn8tWvXKh6PT/0sWrSo4jHBH290Iu/2VCb/dtSWUmqW3LGHtcd0vNaGm1fgl7BC22tZUK+V1GxwBDVHECzUbGG2a8nm+LZfh22vfRAVW7OsHcLI9DXLd6P7gQce0PHHH6/LLrtMF198sbZt26bLLrtMkYiZ77ncv3+/TjjhBK1Zs0bLli3Thz/8Ya1cuVK33nprzuf39fUpmUxO/ezcudNIXChfrKk+7/bWaP7tqC2l1Cy5Yw9rj+l4rQ23WDT/PV+h7bUsqNdKajY4gpojCBZqtjDbtWRzfNuvw7bXPoiKrVnWDmFk+ppVdqP78ccf14oVK9Tb26sVK1bo97//va677jq1tJj9sPzDDz9cRx999EGP/dVf/ZV27NiR8/mNjY2KxWIH/SBYWqMR9XS159zW09Wu1hD/ghxGpdRsvKk+b+7EC9w4oHzULabjtTbc2loa8l4P2loaqhxRcAT1WknNBkdQcwTBQs0WZruWbP5eYvt12PbaB1GxNcvaIYxMX7PKbnS/+c1v1uOPP66PfOQjOvLII3XXXXfpK1/5yoyfSjv11FP1/PPPH/TY7373Oy1evLjiY6E6Otuatbq3e0aiH/imYb58AbNZMLcpb+7w+dzmULcADpgfi2rNLNeDNb3dof18bolrJQojR4DKsF1LNn8vsf06bHvtXcbaIYxMX7PqstlstpwdX/e616muri7/wevq9Ic//KGswGbzxBNP6JRTTtHnPvc5XXDBBXr88ce1cuVK3X777brwwgsL7s83VAfXQCKtVGZSqcyEWqP1ao1GuLCjqJrdvXdUydGJqdyJN9XT5K4S6ha58FobTnu8jBIj4/Iyk4pFI2praQh1k3u6oF8rqVn7gp4jCBZqdna2a8nm7yW2X4dtr32QFapZ1g5hZOqaVXaj26Yf/ehH6uvr07Zt23TkkUfqqquu0sqVK4val5sCwC3ULOAe6hZwCzULuIWaBdxCzQLV4+QH/pxzzjk655xzbIcBAAAAAAAAAAiAsj+jGwAAAAAAAACAIKDRDQAAAAAAAABwGo1uAAAAAAAAAIDTaHQDAAAAAAAAAJzmu9H913/91/rOd76j0dHRSsQDAAAAAAAAAEBJIn4PsGzZMn3qU5/Sxz/+cV1wwQX60Ic+pDe/+c2ViA0OGkiklcpMyhudULypXnOiEXW2NdsOC4AhNmue6w1QOpN1Q00CB6MmzGONgynM94fM3d74yfS4BofH5WUmFGuqV0dLg+LNDVUb3w/bawfYYCrvfTe6N2zYoJtuukn33XefNm7cqOXLl6urq0uXXnqp/v7v/17z58/3HSTcsH1oRKs2bdVj/UNTj/V0tWt1b7cWt7dYjAyACTZrnusNUDqTdUNNAgejJsxjjYMpzPeHzN3e+Lv3jurqe7fo0W2DU48tX9Khdect1YK5TcbH98P22gE2mMz7inxGdyQS0Xve8x794Ac/0MDAgP7u7/5O1113nRYtWqRzzz1XP/3pTysxDAJsIJGekaSStLl/SNdu2qqBRNpSZABMsFnzXG+A0pmsG2oSOBg1YR5rHExhvj9k7vbGT6bHZzS5JemRbYO65t4tSqbHjY7vh+21A2wwnfcV/TLKxx9/XDfccIO+9KUvad68eerr61NHR4fOOeccfepTn6rkUAiYVGZyRpIesLl/SKnMZJUjAmCSzZrnegOUzmTdUJPAwagJ81jjYArz/SFztzf+4PD4jCb3AY9sG9TgcHAb3bbXDrDBdN77/uiSF198Uf/8z/+sO+64Q9u2bdM73/lO/eu//qvOPPNM1dXVSZIuvvhivf3tb9dNN93kdzgElDc6kXd7KpN/OwC32Kx5rjdA6UzWDTUJHIyaMI81DqYw3x8yd4vjFzh+kK8HttcOsMF03vtudHd2dur1r3+9Lr30Ul188cU67LDDZjxn6dKleuMb3+h3KARYrKk+7/bWaP7tANxis+a53gClM1k31CRwMGrCPNY4mMJ8f8jcLY5f4PhBvh7YXjvABtN57/ujSx588EH993//tz796U/nbHJLUiwW00MPPeR3KARYazSinq72nNt6utrVGvX931QABIjNmud6A5TOZN1Qk8DBqAnzWONgCvP9IXO3N37HnAYtX9KRc9vyJR3qmNNgdHw/bK8dYIPpvPfd6L7hhhu0d+/eGY97nqe/+Zu/8Xt4OKKzrVmre7tnJOuBb03tbGu2FBkAE2zWPNcboHQm64aaBA5GTZjHGgdTmO8Pmbu98ePNDVp33tIZze7lSzq0/rylijcHt9Fte+0AG0znfV02m836OcChhx6qP/3pT5o3b95Bj7/44otauHChJiaC9ZlCnucpHo8rmUwqFovZDqfmDCTSSmUmlcpMqDVar9ZohIszfKFmg81mzXO9CS7qNrhM1g016S5q1gxqwrywrnHQazbM94fM3d74yfS4BofHp8bvmNMQmCZ3oZq1vXaADabyvuz3g2/ZskWSlM1m9eyzz+qFF16Y2rZv3z498MADWrhwoe8A4RYuxkC42Kx5rjdA6Uy/owzAK6gJ81jjYArz/SFztyfeHJzGdqlsrx1gg6m8L7vRffzxx6uurk51dXU5P6KkqalJX/3qV30FBwAAAAAAAABAIWU3uv/4xz8qm83qL/7iL/T4448f9EWUDQ0Nmjdvng499NCKBAkAAAAAAAAAwGzKbnQvXrxYkrR///6KBQMAAAAAAAAAQKnKanTfd999Ouuss1RfX6/77rsv73Pf9a53lRUYAAAAAAAAAADFKKvRfe655+qFF17QvHnzdO655876vLq6Ou3bt6/c2AAAAAAAAAAAKKisRvf0jyvho0sAAAAAAAAAADYdYjsAAAAAAAAAAAD8KPvLKH/605/q8ssv1y9/+UvFYrGDtiWTSZ1yyim65ZZbtHz5ct9BzmbdunXq6+vTFVdcoQ0bNhgbJ0wGEmmlMpPyRicUb6rXnGhEnW3NtsMCMAvbNWtzfNtztynMc4c/JnPH9bxkbcJrj5dRYmRcXmZSsaaI2pobND8WrWoMQckRU3EEZX7Fci3eV7Mdf5jvD5l7eMf3w+XYgXKZyvuyG90bNmzQypUrZzS5JSkej+t//I//oX/8x3801uh+4okndNttt2np0qVGjh9G24dGtGrTVj3WPzT1WE9Xu1b3dmtxe4vFyADkYrtmbY5ve+42hXnu8Mdk7riel6xNeO0YGlFfjvOzprdbR1Tp/AQlR0zFEZT5Fcu1eF/Ndvxhvj9k7uEd3w+XYwfKZTLvy/7okmeeeUZvf/vbZ91+xhln6Mknnyz38HkNDw/rwgsv1Ne//nW1tbUZGSNsBhLpGUkmSZv7h3Ttpq0aSKQtRQYgF9s1a3N823O3Kcxzhz8mc8f1vGRtwmuPl5nR5JZePj+rNm3VHi9jPIag5IipOIIyv2K5Fu+r2Y4/zPeHzD284/vhcuxAuUznfdnv6N6zZ4/q6+tnP3Akopdeeqncw+f1sY99TGeffbZOP/103XjjjXmfOzY2prGxsal/e55nJCbXpTKTM5LsgM39Q0plJqscEcKKmi2O7Zq1Ob7tudsU1LlTt8FnMneCmpfFCuPaULMvS4yM5z0/iZFx4x9hEpQcMRVHUOZXrKDGW2zN2o4/zPeHzD284+fiSs0CNpjO+7Lf0b1w4UL99re/nXX7li1bdPjhh5d7+Fndfffdeuqpp7R27dqinr927VrF4/Gpn0WLFlU8plrgjU7k3Z7K5N8OVAo1WxzbNWtzfNtztymoc6dug89k7gQ1L4sVxrWhZl/mFfhFqtD2isQQkBwxFUdQ5lesoMZbbM3ajj/M94fMPbzj5+JKzQI2mM77shvd73jHO3Tdddcpk5n5J32jo6O64YYbdM455/gK7tV27typK664Qnfeeaei0eLeXdHX16dkMjn1s3PnzorGVCtiTbO/O1+SWqP5twOVQs0Wx3bN2hzf9txtCurcqdvgM5k7Qc3LYoVxbajZl8Wi+f+4tdD2isQQkBwxFUdQ5lesoMZbbM3ajj/M94fMPbzj5+JKzQI2mM77shvdn/nMZ/TnP/9Zb3jDG/SFL3xBP/jBD/SDH/xA69ev11FHHaU///nPuvbaa30F92pPPvmkXnzxRZ1wwgmKRCKKRCJ6+OGH9ZWvfEWRSET79u2bsU9jY6NisdhBP5ipNRpRT1d7zm09Xe1qrcKNPiBRs8WyXbM2x7c9d5uCOnfqNvhM5k5Q87JYYVwbavZlbS0Nec9PW0uD8RiCkiOm4gjK/IoV1HiLrVnb8Yf5/pC5h3f8XFypWcAG03lfdqN7/vz5+vnPf65jjz1WfX196u3tVW9vr1atWqVjjz1Wmzdv1vz5830F92pve9vbtHXrVj399NNTPyeddJIuvPBCPf300zr00EMrOl6YdLY1a3Vv94xkO/Ctp51tzZYiA5CL7Zq1Ob7tudsU5rnDH5O543pesjbhNT8W1ZpZzs+a3m7jn88tBSdHTMURlPkVy7V4X812/GG+P2Tu4R3fD5djB8plOu/rstls1tcRJCUSCfX39yubzWrJkiVqa2vze8iinXbaaTr++OO1YcOGop7veZ7i8biSyWRo372Sz0AirVRmUqnMhFqj9WqNRri4wipqNj/bNWtzfNtztynoc6dug8tk7gQ9LwsJ89qEvWb3eBklRsblZSYVi0bU1tJQlSb3dEHJEVNxBGV+xQp6vIVq1nb8Yb4/ZO7hHT+foNcsYIOpvK/I30G0tbXpjW98YyUOBcu4mAJusV2zNse3PXebwjx3+GP6HWUuY23Ca34sWvXG9qsFJUdMxRGU+RXLtXhfzXb8Yb4/ZO7hHd8Pl2MHymUq753/wJ+f/exntkMAAAAAAAAAAFhU9md0AwAAAAAAAAAQBDS6AQAAAAAAAABOo9ENAAAAAAAAAHAajW4AAAAAAAAAgNNodAMAAAAAAAAAnBaxHQAqayCRViozKW90QvGmes2JRtTZ1mw7LACG2K55m+PbnjvgIpN143pNuh6/i3bvHVVydGJqzWNN9Vowt6kix3btfLoWr+RmzKh9Yc5L23MP+/h+uBw7UC5TeU+ju4ZsHxrRqk1b9Vj/0NRjPV3tWt3brcXtLRYjA2CC7Zq3Ob7tuQMuMlk3rtek6/G7iHx8hWvxSm7GjNoX5ry0Pfewj++Hy7ED5TKZ93x0SY0YSKRnJIkkbe4f0rWbtmogkbYUGQATbNe8zfFtzx1wkcm6cb0mXY/fRbv3juZd8917R8s+tmvn07V4JTdjRu0Lc17annvYx/fD5diBcpnOexrdNSKVmZyRJAds7h9SKjNZ5YgAmGS75m2Ob3vugItM1o3rNel6/C5Kjk7kXfPk6ETZx3btfLoWr+RmzKh9Yc5L23MP+/h+uBw7UC7TeU+ju0Z4BX4hSGXK/4UBQPDYrnmb49ueO+Aik3Xjek26Hr+LyMdXuBav5GbMqH1hzkvbcw/7+H64HDtQLtN5T6O7RsSa6vNub43m3w7ALbZr3ub4tucOuMhk3bhek67H7yLy8RWuxSu5GTNqX5jz0vbcwz6+Hy7HDpTLdN7T6K4RrdGIerrac27r6WpXa5TvHQVqie2atzm+7bkDLjJZN67XpOvxuyjeVJ93zeMFfgHKx7Xz6Vq8kpsxo/aFOS9tzz3s4/vhcuxAuUznPY3uGtHZ1qzVvd0zkuXAt5Z2tjVbigyACbZr3ub4tucOuMhk3bhek67H76IFc5vyrvmCuU1lH9u18+lavJKbMaP2hTkvbc897OP74XLsQLlM531dNpvN+jqCYzzPUzweVzKZVCwWsx1OxQ0k0kplJpXKTKg1Wq/WaISLI5xW6zXrl+2atzm+7bljdtRtcJmsG9dr0vX4/bBVs7v3jio5OjG15vGmel9N7ulcO5+uxSu5GXOt4HV2dmHOS9tzD/v4+RSq2SDHDphiKu/5O4gaw8UQCBfbNW9zfNtzB1xk+q8tXOZ6/C5aMLepYo3tV3PtfLoWr+RmzKh9Yc5L23MP+/h+uBw7UC5Tec9HlwAAAAAAAAAAnEajGwAAAAAAAADgNBrdAAAAAAAAAACn0egGAAAAAAAAADiNRjcAAAAAAAAAwGk0ugEAAAAAAAAATqPRDQAAAAAAAABwWsR2AKVau3atvve97+m5555TU1OTTjnlFK1fv15HHXWU7dAqYiCRViozKW90QvGmes2JRtTZ1mw7LCDQbNaN7ZoN8/i2527THi+jxMi4vMykYk0RtTU3aH4sajusopk+dyaP73Ls1Ti+SS6vjcvrbpKL62IqZlPH3ZVIy5t23NZoRAstrHEQznUQYqgW23MN8/0hcw/v+H64HDtQLlN571yj++GHH9bHPvYxvfGNb9Tk5KRWrVqlM844Q88++6xaWlpsh+fL9qERrdq0VY/1D0091tPVrtW93Vrc7vbcAFNs1o3tmg3z+LbnbtOOoRH15Zj7mt5uHeHA3E2fO5PHdzn2ahzfJJfXxuV1N8nFdTEVs2vHdTGOIMRQLbbnGub7Q+Ye3vH9cDl2oFwm8965jy554IEHdPHFF+uYY47Rcccdp29/+9vasWOHnnzySduh+TKQSM84yZK0uX9I127aqoFE2lJkQHDZrBvbNRvm8W3P3aY9XmZGk1t6ee6rNm3VHi9jKbLimD53Jo/vcuzVOL5JLq+Ny+tukovrYipmU8fdVeC4u6q0xkE410GIoVpszzXM94fMPbzj++Fy7EC5TOe9c+/ofrVkMilJes1rXpNz+9jYmMbGxqb+7XleVeIqVSozOeMkH7C5f0ipzGSVIwLsKKVmbdaN7ZoN8/i2525TYmQ879wTI+NWPsKk2Lo1fe5MHt/l2KtxfJNcXpugrrvt++Ogrks+pmI2dVyvwHG9zKQWlnXk0gThXAchBr+C8jpbSJjvD5l7eMfPxZWaBWwwnffOvaN7uv379+uTn/ykTj31VB177LE5n7N27VrF4/Gpn0WLFlU5yuJ4oxN5t6cy+bcDtaKUmrVZN7ZrNszj2567TV6BF/1C200ptm5NnzuTx3c59moc3ySX1yao6277/jio65KPqZhdO66LcQQhBr+C8jpbSJjvD5l7eMfPxZWaBWwwnfdON7o/9rGP6be//a3uvvvuWZ/T19enZDI59bNz584qRli8WFN93u2t0fzbgVpRSs3arBvbNRvm8W3P3aZYNP8fYhXabkqxdWv63Jk8vsuxV+P4Jrm8NkFdd9v3x0Fdl3xMxezacV2MIwgx+BWU19lCwnx/yNzDO34urtQsYIPpvHe20X355ZfrRz/6kR566CF1dnbO+rzGxkbFYrGDfoKoNRpRT1d7zm09Xe1qtdS8AKqtlJq1WTe2azbM49ueu01tLQ15597W0lDliF5WbN2aPncmj+9y7NU4vkkur01Q1932/XFQ1yUfUzGbOm6swHGr9R9Gg3CugxCDX0F5nS0kzPeHzD284+fiSs0CNpjOe+ca3dlsVpdffrk2bdqkn/70pzryyCNth1QRnW3NWt3bPeNkH/jW0c62ZkuRAcFls25s12yYx7c9d5vmx6JaM8vc1/R2W/l87lKYPncmj+9y7NU4vkkur43L626Si+tiKmZTx11Y4LgLq7TGQTjXQYihWmzPNcz3h8w9vOP74XLsQLlM531dNpvN+jpClV122WW666679IMf/EBHHXXU1OPxeFxNTU0F9/c8T/F4XMlkMpDv7h5IpJXKTCqVmVBrtF6t0QgXN4RaMTVrs25s12yYx7c9d5v2eBklRsblZSYVi0bU1tIQqCZ3obo1fe5MHt/l2KtxfJNcXpugr7ut++Ogr0supmI2ddxdibS8aceNRSNVa3JPF4RzHYQYKsX262whYb4/ZO7hHT+foNcsYIOpvHeu0V1XV5fz8TvuuEMXX3xxwf2D3ugGcDBqFnAPdQu4hZoF3ELNAm6hZoHqce4DfxzrywMAAAAAAAAADHPuM7oBAAAAAAAAAJiORjcAAAAAAAAAwGk0ugEAAAAAAAAATqPRDQAAAAAAAABwGo1uAAAAAAAAAIDTIrYDqEUDibRSmUl5oxOKN9VrTjSizrZm22EBNSvMNWd77jbHtz13lI9zZw9rPzuTa8O6V4apdeT8lKeUdXNtjV2LN2jCfH9oc/zde0eVHJ2YGjvWVK8Fc5uqMrZkf+2T6XENDo/Ly0wo1lSvjpYGxZsbqja+H7bXDrDBVN7T6K6w7UMjWrVpqx7rH5p6rKerXat7u7W4vcViZEBtCnPN2Z67zfFtzx3l49zZw9rPzuTasO6VYWodOT/lKWXdXFtj1+INmjDfHzJ3e+Pv3juqq+/doke3DU49tnxJh9adt7Sqzf5y2F47wAaTec9Hl1TQQCI940RJ0ub+IV27aasGEmlLkQG1Kcw1Z3vuNse3PXeUj3NnD2s/O5Nrw7pXhql15PyUp5R1c22NXYs3aMJ8f2hz/N17R/OOvXvvqLGxJftrn0yPz2hyS9Ij2wZ1zb1blEyPGx3fD9trB9hgOu9pdFdQKjM540QdsLl/SKnMZJUjAmpbmGvO9txtjm977igf584e1n52JteGda8MU+vI+SlPKevm2hq7Fm/QhPn+0Ob4ydGJvGMnRyeMjS3ZX/vB4fEZTe4DHtk2qMHh4Da6ba8dYIPpvKfRXUFegReQVMbsCwwQNmGuOdtztzm+7bmjfJw7e1j72ZlcG9a9MkytI+enPKWsm2tr7Fq8QRPm+0PmbnH8AscPct3aXjvABtN5T6O7gmJN9Xm3t0bzbwdQmjDXnO252xzf9txRPs6dPaz97EyuDeteGabWkfNTnlLWzbU1di3eoAnz/SFztzh+geMHuW5trx1gg+m8p9FdQa3RiHq62nNu6+lqV2uU7/4EKinMNWd77jbHtz13lI9zZw9rPzuTa8O6V4apdeT8lKeUdXNtjV2LN2jCfH9oc/x4U33eseMFmkp+2V77jjkNWr6kI+e25Us61DGnwej4ftheO8AG03lPo7uCOtuatbq3e8YJO/DNoZ1tzZYiA2pTmGvO9txtjm977igf584e1n52JteGda8MU+vI+SlPKevm2hq7Fm/QhPn+0Ob4C+Y25R17wdwmY2NL9tc+3tygdectndHsXr6kQ+vPW6p4c3Ab3bbXDrDBdN7XZbPZrK8jOMbzPMXjcSWTScViMSNjDCTSSmUmlcpMqDVar9ZohAsUUKZiajbMNWd77jbHtz13zK5Q3XLu7GHtZ2dybYK+7tW4P64EU+sY9PMTVKWsm2trHPR4g16zYb4/tDn+7r2jSo5OTI0db6o33uSezvbaJ9PjGhwenxq/Y05DYJrc3BsDM5nKexrdAAKNmgXcQ90CbqFmAbdQs4BbqFmgevjoEgAAAAAAAACA02h0AwAAAAAAAACcRqMbAAAAAAAAAOA0Gt0AAAAAAAAAAKfR6AYAAAAAAAAAOI1GNwAAAAAAAADAaTS6AQAAAAAAAABOi9gOoFxf+9rX9MUvflEvvPCCjjvuOH31q1/VySefXJFjDyTSSmUm5Y1OKN5UrznRiDrbmitybACoJTavl7v3jio5OjE1dqypXgvmNlVlbMBV3OOgHLsSaXnT8qY1GtHCCuRNMj2uweFxeZkJxZrq1dHSoHhzQwUidg+1+Qrywn0283mPl1FiZFxeZlKxpojamhs0PxatytiS3bnbvo6EfXw/XI4dCBonG93f/e53ddVVV+nWW2/Vm970Jm3YsEFnnnmmnn/+ec2bN8/XsbcPjWjVpq16rH9o6rGernat7u3W4vYWv6EDQM2web3kWg2UjrpBOUzlze69o7r63i16dNvg1GPLl3Ro3XlLQ/cfLanNV5AX7rOZzzuGRtSXY+w1vd06ogq1FOZ747CP74fLsQNB5ORHl9x8881auXKlLrnkEh199NG69dZb1dzcrG9961u+jjuQSM+4wEjS5v4hXbtpqwYSaV/HB4BaYfN6uXvvaN6xd+8dNTY24CrucVCOXQXyZleZeZNMj89oZkrSI9sGdc29W5RMj5cds2uozVeQF+6zmc97vMyMJveBsVdt2qo9XsbY2JLdudu+joR9fD9cjh0IKufe0T0+Pq4nn3xSfX19U48dcsghOv300/WLX/xixvPHxsY0NjY29W/P82Y9diozOeMCc8Dm/iGlMpM+IgdQjFJqFvbYvF4mRyfyjp0cneBdX1VG3QYf9ziYrtia9QrkjZeZ1MIyxh8cHp/RzDzgkW2DGhweD81HVVCbryAvZufK66zNfE6MjOcdOzEybvQjTGzO3fZ1JOzj51JszQYxdsB1zr2je3BwUPv27dP8+fMPenz+/Pl64YUXZjx/7dq1isfjUz+LFi2a9dje6ETesVOZ/NsB+FdKzcIem9dLrtXBQ90GH3WD6YqtWVN54xXYL0z5SG2+gryYnSuvs1bvDws0BAtt9z1+iO+Nwz5+LrZfZ4Ewc67RXaq+vj4lk8mpn507d8763FhTfd5jtUbzbwfgXyk1C3tsXi+5VgcPdRt81A2mK7ZmTeVNrMB+YcpHavMV5MXsXHmdtXp/GM3/x+qFtvseP8T3xmEfPxfbr7NAmDnX6O7o6NChhx6qPXv2HPT4nj179NrXvnbG8xsbGxWLxQ76mU1rNKKervac23q62tVq+MURQGk1C3tsXi/jTfV5x44XuGFE5VG3wcc9DqYrtmZjBfKm3MZRx5wGLV/SkXPb8iUd6pgTno+noDZfQV7MzpXXWZv53NbSkHfsthaz+WNz7ravI2EfP5diazaIsQOuc67R3dDQoBNPPFEPPvjg1GP79+/Xgw8+qLe85S2+jt3Z1qzVvd0zLjQHvvG2s63Z1/EBoFbYvF4umNuUd2w+nxuYiXsclGNhgbxZWGbexJsbtO68pTOamsuXdGj9eUtD9TnM1OYryAv32czn+bGo1swy9prebqOfzy3Znbvt60jYx/fD5diBoKrLZrNZ20GU6rvf/a4uuugi3XbbbTr55JO1YcMG3XPPPXruuedmfHb3q3mep3g8rmQyOet/VRtIpJXKTCqVmVBrtF6t0QgXGMCSYmoW9ti8Xu7eO6rk6MTU2PGmeprcAUHdBhf3OMilUM3uSqTlTcubWDRSdpN7umR6XIPD41PH7ZjTENpmJrX5CvKisKC/ztrM5z1eRomRcXmZScWiEbW1NBhvck9nc+62ryNhHz+fQjUb5NgB1zj5dxDve9/79NJLL+n666/XCy+8oOOPP14PPPBAwSZ3sbigAEBxbF4vF8xtorENlIh7HJRjYVuzFho4bryZBuYB1OYryAv32czn+bFoVRvbr2Zz7ravI2Ef3w+XYweCxslGtyRdfvnluvzyy22HAQAAAAAAAACwzLnP6AYAAAAAAAAAYDpn39FdrgMfSe55nuVIALe1traqrq7O+DjULFAZ1apZiboFKoGaBdxCzQJuoWYBtxRbs6FrdKdSKUnSokWLLEcCuK1aX35DzQKVUc0vrKJuAf+oWcAt1CzgFmoWcEuxNVuXPfCflkJi//792r17d8H/EuB5nhYtWqSdO3cG8pusg4y1K49r61at/wJOzRbG3Jl7MXOv5rtWiqnbMJ075lqbTM+Vmq2uWp5fLc9NCs78qNngYO7hnLtU2vypWRzA2ttjomZD947uQw45RJ2dnUU/PxaLkehlYu3Kw7odjJotHnNn7kFRSt0GMX5TmGttqoW5UrOvqOX51fLcpNqf33TUbHGYezjnLgVv/tSsG1h7eyq59nwZJQAAAAAAAADAaTS6AQAAAAAAAABOo9E9i8bGRt1www1qbGy0HYpzWLvysG7+hHn9mDtzd5Hr8ZeCudamMM1Vqv351vL8anluUu3Pr1xhXhfmHs65S27P3+XYXcfa22Ni7UP3ZZQAAAAAAAAAgNrCO7oBAAAAAAAAAE6j0Q0AAAAAAAAAcBqNbgAAAAAAAACA02h0AwAAAAAAAACcRqMbAAAAAAAAAOA0Gt0AAAAAAAAAAKfR6AYAAAAAAAAAOI1GNwAAAAAAAADAaTS6AQAAAAAAAABOo9ENAAAAAAAAAHAajW4AAAAAAAAAgNNodAMAAAAAAAAAnEajGwAAAAAAAADgtNA1urPZrDzPUzabtR0KgCJQs4B7qFvALdQs4BZqFnALNQtUT+ga3alUSvF4XKlUynYoAIpAzQLuoW4Bt1CzgFuoWcAt1CxQPaFrdAMAAAAAAAAAaguNbgAAAAAAAACA02h0AwAAAAAAAACcRqMbAAAAAAAAAOA0Gt0AAAAAAAAAAKdFbAdQjl27dunqq6/W/fffr3Q6ra6uLt1xxx066aSTbIfm2x4vo8TIuLzMpGJNEbU1N2h+LFq18QcSaaUyk/JGJxRvqtecaESdbc1VGx8AUBjXaqDyTNYVNVs7TN2r13qO1Pr8EBy2cy2ZHtfg8Li8zIRiTfXqaGlQvLmhKmPbnrvt8V3G2iGMTOW9c43uRCKhU089VStWrND999+vww47TNu2bVNbW5vt0HzbMTSivk1b9Vj/0NRjPV3tWtPbrSPaW4yPv31oRKtyjL+6t1uLqzA+AKAwrtVA5ZmsK2q2dpi6V6/1HKn1+SE4bOfa7r2juvreLXp02+DUY8uXdGjdeUu1YG6T0bFtz932+C5j7RBGJvPeuY8uWb9+vRYtWqQ77rhDJ598so488kidccYZev3rX287NF/2eJkZN86StLl/SKs2bdUeL2N0/IFEekaSHRj/2k1bNZBIGx0fAFAY12qg8kzWFTVbO0zdq9d6jtT6/BActnMtmR6f0eSWpEe2Deqae7comR43Nrbtudse32WsHcLIdN47947u++67T2eeeabOP/98Pfzww1q4cKEuu+wyrVy5Mufzx8bGNDY2NvVvz/OqFWpJEiPjM07yAZv7h5QYGTf6ESapzGTe8VOZSWNjA9O5UrOADUG9VlO3cJnJuqJma4epe/Wg5kil1Pr8qoWaLcx2rg0Oj89och/wyLZBDQ6PG/sIE9tztz1+EBVbs6wdwsh03jv3ju4//OEPuuWWW7RkyRL9+Mc/1kc/+lF94hOf0MaNG3M+f+3atYrH41M/ixYtqnLExfEKnMhC232PPzqRd3sqk387UCmu1CxgQ1Cv1dQtXGayrqjZ2mHqXj2oOVIptT6/aqFmC7Oda16B45sc3/rcqfMZiq1Z1g5hZDrvnWt079+/XyeccILWrFmjZcuW6cMf/rBWrlypW2+9Nefz+/r6lEwmp3527txZ5YiLE4vmf3N9oe2+x2+qz7u9NZp/O1AprtQsYENQr9XULVxmsq6o2dph6l49qDlSKbU+v2qhZguznWuxAsc3Ob71uVPnMxRbs6wdwsh03jvX6D788MN19NFHH/TYX/3VX2nHjh05n9/Y2KhYLHbQTxC1tTSop6s957aerna1tZj9pubWaCTv+K2GG+3AAa7ULGBDUK/V1C1cZrKuqNnaYepePag5Uim1Pr9qoWYLs51rHXMatHxJR85ty5d0qGOOud/nbc/d9vhBVGzNsnYII9N571yj+9RTT9Xzzz9/0GO/+93vtHjxYksRVcb8WFRrertnnOwD3+Ru8vO5JamzrVmrZxl/dW+3OtuajY4PACiMazVQeSbripqtHabu1Ws9R2p9fggO27kWb27QuvOWzmh2L1/SofXnLTX2+dyS/bnbHt9lrB3CyHTe12Wz2ayvI1TZE088oVNOOUWf+9zndMEFF+jxxx/XypUrdfvtt+vCCy8suL/neYrH40omk4H8L+F7vIwSI+PyMpOKRSNqa2kw3uSebiCRViozqVRmQq3RerVGI1xcYVXQaxawIejXauoWLjJZV9Rs7TB1rx70HPGr1udXbdTs7GznWjI9rsHh8anxO+Y0GG1yT2d77rbHD7JCNcvaIYxM5b1zjW5J+tGPfqS+vj5t27ZNRx55pK666iqtXLmyqH25KQDcQs0C7qFuAbdQs4BbqFnALdQsUD1OfuDPOeeco3POOcd2GAAAAAAAAACAAHDuM7oBAAAAAAAAAJiORjcAAAAAAAAAwGk0ugEAAAAAAAAATqPRDQAAAAAAAABwGo1uAAAAAAAAAIDTaHQDAAAAAAAAAJxGoxsAAAAAAAAA4DQa3QAAAAAAAAAAp9HoBgAAAAAAAAA4jUY3AAAAAAAAAMBpNLoBAAAAAAAAAE6j0Q0AAAAAAAAAcBqNbgAAAAAAAACA02h0AwAAAAAAAACcRqMbAAAAAAAAAOA0Gt0AAAAAAAAAAKfR6AYAAAAAAAAAOI1GNwAAAAAAAADAaTS6AQAAAAAAAABOo9ENAAAAAAAAAHAajW4AAAAAAAAAgNNodAMAAAAAAAAAnBaxHUCpPvvZz+pzn/vcQY8dddRReu655yxFhKBIpsc1ODwuLzOhWFO9OloaFG9usB0WgBrFNQcuIm9hGjkGIMy4BqIc5A1QOc41uiXpmGOO0U9+8pOpf0ciTk4DFbR776iuvneLHt02OPXY8iUdWnfeUi2Y22QxMgC1iGsOXETewjRyDECYcQ1EOcgboLKc/OiSSCSi1772tVM/HR0dtkOCRcn0+IwXBkl6ZNugrrl3i5LpcUuRAahFXHPgIvIWppFjAMKMayDKQd4AlefkW6G3bdumBQsWKBqN6i1veYvWrl2rI444Iudzx8bGNDY2NvVvz/OqFSaqZHB4fMYLwwGPbBvU4PA4f/bjEGoWQcc1ZybqNvjIW0xnombJMcAcXmeDj2sgpiu2ZskboPKce0f3m970Jn3729/WAw88oFtuuUV//OMf9da3vlWpVCrn89euXat4PD71s2jRoipHDNO8zETe7akC2xEs1CyCjmvOTNRt8JG3mM5EzZJjgDm8zgYf10BMV2zNkjdA5TnX6D7rrLN0/vnna+nSpTrzzDP17//+79q7d6/uueeenM/v6+tTMpmc+tm5c2eVI4ZpsWh93u2tBbYjWKhZBB3XnJmo2+AjbzGdiZolxwBzeJ0NPq6BmK7YmiVvgMpz8qNLpps7d67e8IY3qL+/P+f2xsZGNTY2VjkqVFPHnAYtX9KhR3L8yc/yJR3qmMOf+riEmkXQcc2ZiboNPvIW05moWXIMMIfX2eDjGojpiq1Z8gaoPOfe0f1qw8PD+v3vf6/DDz/cdiiwJN7coHXnLdXyJQd/KenyJR1af95SPtMKQEVxzYGLyFuYRo4BCDOugSgHeQNUXl02m83aDqIUn/rUp/TOd75Tixcv1u7du3XDDTfo6aef1rPPPqvDDjus4P6e5ykejyuZTCoWi1UhYlRLMj2uweFxpTITao3Wq2NOAy8MNYCaRVBxzZkddRtc5C1yqWTNkmOAebzOBhfXQORSqGbJG6BynPvokoGBAX3gAx/Q0NCQDjvsMPX09OiXv/xlUU1u1LZ4My8GAKqHaw5cRN7CNHIMQJhxDUQ5yBugcpxrdN999922QwAAAAAAAAAABIjzn9ENAAAAAAAAAAg3Gt0AAAAAAAAAAKfR6AYAAAAAAAAAOI1GNwAAAAAAAADAaTS6AQAAAAAAAABOo9ENAAAAAAAAAHAajW4AAAAAAAAAgNNodAMAAAAAAAAAnEajGwAAAAAAAADgNBrdAAAAAAAAAACn0egGAAAAAAAAADiNRjcAAAAAAAAAwGk0ugEAAAAAAAAATqPRDQAAAAAAAABwGo1uAAAAAAAAAIDTaHQDAAAAAAAAAJxGoxsAAAAAAAAA4DQa3QAAAAAAAAAAp9HoBgAAAAAAAAA4jUY3AAAAAAAAAMBpNLoBAAAAAAAAAE6j0Q0AAAAAAAAAcFrEdgB+rFu3Tn19fbriiiu0YcOGih13995RJUcn5I1OKN5Ur1hTvRbMbSp6/4FEWqnM5NT+c6IRdbY1G9+3Fvb3w+/Ye7yMEiPj8jKTijVF1NbcoPmxaFXGt73uNs8bUC7y1l2cO3tMrj3ndXZhWptS5lrquuxKpOVNe35rNKKFFTg2zw1WHMn0uAaHx+VlJhRrqldHS4PizQ2+j1vK73iu16zt+F3+ndDl8cM89yCM74fLsQPlMpX3zja6n3jiCd12221aunRpRY+7fWhEqzZt1WP9Q1OP9XS1a3Vvtxa3txjd3+bYQdjfD79j7xgaUV+O/df0dusIzjsQOOStuzh39phce87r7MK0NqXMtdR1MXVsnhusOHbvHdXV927Ro9sGpx5bvqRD685bOqMpHYR4g8h2/C7/Tujy+GGeexDG98Pl2IFymcx7Jz+6ZHh4WBdeeKG+/vWvq62trWLH3b13dMZCS9Lm/iFdu2mrdu8dzbv/QCKdd/+BRNrIvrWwvx9+x97jZWY0uQ/sv2rTVu3xMsbGt73uNs8bUC7y1l2cO3tMrj3ndXZhWptS5lrquuwq8PxdZR6b56qs55t6bjI9PqPJLUmPbBvUNfduUTI9XtZxS/kdz/WatR2/y78Tujx+mOcehPH9cDl2oFym897Jd3R/7GMf09lnn63TTz9dN954Y97njo2NaWxsbOrfnufN+tzk6MSMhT5gc/+QkqMTeT/CJJWZzLt/KjNpZN9a2N8Pv2MnRsbz7p8YGc/7ESZhPu8mlFKzCKcg5m3YFVu3nDt7TK4953V2QV0bE6+1pcy11HXxCjzfy0xqoeE4avm5QYljcHh8RpP7gEe2DWpweHzqI0xKOW4pv+O5XrO243f5d0KXxw/z3IMwfi6u1Cxgg+m8d+4d3XfffbeeeuoprV27tqjnr127VvF4fOpn0aJFsz7XG53Ie6xUJv92P/vbHDsI+/vhO/YCRVRwe4jPuwml1CzCKYh5G3bF1i3nzh6Ta895nV1Q18bEa20pcy11XUwdm+e+IghxeAXqIYjrVi2uvM66/Duhy+OHee5BGD8XV2oWsMF03jvV6N65c6euuOIK3XnnnYpGi/uSwL6+PiWTyamfnTt3zvrcWFN93mO1RvNv97O/zbGDsL8fvmOP5v/DhoLbQ3zeTSilZhFOQczbsCu2bjl39phce87r7IK6NiZea0uZa6nrYurYPPcVQYgjVqAegrhu1eLK66zLvxO6PH6Y5x6E8XNxpWYBG0znvVON7ieffFIvvviiTjjhBEUiEUUiET388MP6yle+okgkon379s3Yp7GxUbFY7KCf2cSb6tXT1Z5zW09Xu+IFT0Yk7/6teRqmfvathf398Dt2W0tD3v3bWnJ/y3slxre97jbP22xKqVmEUxDzNuyKrVvOnT0m157zOrugro2J19pS5lrqusQKPD9W5rF5rsp6vqnndsxp0PIlHTmfu3xJhzrmvHJPXspxS/kdz/WatR2/y78Tujx+mOcehPFzcaVmARtM571Tje63ve1t2rp1q55++umpn5NOOkkXXnihnn76aR166KG+jr9gbpNW93bPWPAD3/yZ7/O5JamzrTnv/p1tzUb2rYX9/fA79vxYVGtm2X9Nb3fez+f2O77tdbd53oBykbfu4tzZY3LtOa+zC9PalDLXUtdlYYHnLyzz2DxXZT3f1HPjzQ1ad97SGc3u5Us6tP68pVOfz13qcUv5Hc/1mrUdv8u/E7o8fpjnHoTx/XA5dqBcpvO+LpvNZn0dwbLTTjtNxx9/vDZs2FDU8z3PUzweVzKZnPW/qu3eO6rk6IRSmQm1RusVb6ov2OSebiCRViozObV/azRS9Inys28t7O+H37H3eBklRsblZSYVi0bU1tJQsMldqfFtr7vN81ZIMTWLcApy3oZdobrl3Nljcu05r7ML+tpU8rW2lLmWui67Eml5054fi0YOanJXI45afm5Q4kimxzU4PD713I45DQc1ucs9bim/47les7bjd/l3QpfHD/PcgzB+PkGvWcAGU3lPoxtAoFGzgHuoW8At1CzgFmoWcAs1C1SP8x/487Of/cx2CAAAAAAAAAAAi5z6jG4AAAAAAAAAAF6t6o3u8fFxPf/885qcnKz20AAAAAAAAACAGlS1Rnc6ndaHPvQhNTc365hjjtGOHTskSR//+Me1bt26aoUBAAAAAAAAAKgxVWt09/X16ZlnntHPfvYzRaPRqcdPP/10ffe7361WGAAAAAAAAACAGlO1L6P8/ve/r+9+97t685vfrLq6uqnHjznmGP3+97+vVhgAAAAAAAAAgBpTtXd0v/TSS5o3b96Mx0dGRg5qfAMAAAAAAAAAUIqqNbpPOukk/Z//83+m/n2guf2Nb3xDb3nLW6oVBgAAAAAAAACgxlTto0vWrFmjs846S88++6wmJyf15S9/Wc8++6x+/vOf6+GHH65WGAAAAAAAAACAGlO1d3T39PTo6aef1uTkpLq7u/Uf//Efmjdvnn7xi1/oxBNPrFYYAAAAAAAAAIAaU7V3dEvS61//en3961+v5pAAAAAAAAAAgBpXtUa353k5H6+rq1NjY6MaGhqqFQoAAAAAAAAAoIZUrdE9d+7cqS+gzKWzs1MXX3yxbrjhBh1ySNU+UQUAAAAAAAAA4LiqNbq//e1v69prr9XFF1+sk08+WZL0+OOPa+PGjfrMZz6jl156STfddJMaGxu1atWqaoUFAAAAAAAAAHBc1RrdGzdu1Je+9CVdcMEFU4+9853vVHd3t2677TY9+OCDOuKII7R69Woa3QAAAAAAAACAolXtM0J+/vOfa9myZTMeX7ZsmX7xi19Iknp6erRjx45qhQQAAAAAAAAAqAFVa3QvWrRI3/zmN2c8/s1vflOLFi2SJA0NDamtra1aIQEAAAAAAAAAakDVPrrkpptu0vnnn6/7779fb3zjGyVJv/71r/Xcc8/p3/7t3yRJTzzxhN73vvdVKyQAAAAAAAAAQA2oWqP7Xe96l55//nnddtttev755yVJZ511lr7//e/rda97nSTpox/9aLXCAQAAAAAAAADUiKo1uiXpda97ndauXVvNIQEAAAAAAAAANa6qjW5JSqfT2rFjh8bHxw96fOnSpdUOBQAAAAAAAABQA6rW6H7ppZd0ySWX6P7778+5fd++fdUKBQAAAAAAAABQQw6p1kCf/OQntXfvXv3qV79SU1OTHnjgAW3cuFFLlizRfffdV60wAAAAAAAAAAA1pmrv6P7pT3+qH/zgBzrppJN0yCGHaPHixfrbv/1bxWIxrV27VmeffXZRx7nlllt0yy236P/+3/8rSTrmmGN0/fXX66yzzqpYrAOJtFKZSXmjE4o31WtONKLOtuaq7G9zbNv7247dLz/jJ9PjGhwel5eZUKypXh0tDYo3N1Rl7Ersj/Aid1AO03lj8vgux276+C7HbprLsUvSrkRa3rT4W6MRLZwl/lLmWuq6lHK/ZCoOU+eylOPu3juq5OjE1HNjTfVaMLcp53NLvccMwvxMHbeUdXO9Zm2zuX62zx1zD+/4frgcO1AuU3lftUb3yMiI5s2bJ0lqa2vTSy+9pDe84Q3q7u7WU089VfRxOjs7tW7dOi1ZskTZbFYbN27Uu9/9bv3mN7/RMccc4zvO7UMjWrVpqx7rH5p6rKerXat7u7W4vcXo/jbHtr2/7dj98jP+7r2juvreLXp02+DUY8uXdGjdeUtnvfmu1NiV2B/hRe6gHKbzxuTxXY7d9PFdjt00l2OXSovf1HOl0u6XghJzsUzFUOo9ZhDmZ+q4QTjPYWFz/WyfO+Ye3vH9cDl2oFwm875qH11y1FFH6fnnn5ckHXfccbrtttu0a9cu3XrrrTr88MOLPs473/lOveMd79CSJUv0hje8QatXr9acOXP0y1/+0neMA4n0jIWWpM39Q7p201YNJNLG9rc5tu39bcful5/xk+nxGb+ASNIj2wZ1zb1blEyPz7Kn/7ErsT/Ci9xBOUznjcnjuxy76eO7HLtpLscuvfxO7nzx75oWfylzLXVdSrlfMhWHqXNZynF37x3N+9zde0enHiv1HjMI8zN13FLWzfWatc3m+tk+d8w9vOP74XLsQLlM533V3tF9xRVX6E9/+pMk6YYbbtDb3/523XnnnWpoaNC3v/3tso65b98+/e///b81MjKit7zlLTmfMzY2prGxsal/e5436/FSmckZC33A5v4hpTKTeePxs7/NsW3vbzt2v/yMPzg8PuMXkAMe2TaoweHxvH9e6vra5VJKzcKeIOYO7Cm2bk3njcnjuxy76eO7HLtpQY292Jr1CsTvZSa18P/9u5S5lroupdwvmYrD1Lks5bjJ0Ym8z02OTky9U7vUe8wgzM/UcUtZN9dr1jab62f73DH38I6fS1DujYEgMp33VXtH9wc/+EFdfPHFkqQTTzxR27dv1xNPPKGdO3fqfe97X0nH2rp1q+bMmaPGxkZ95CMf0aZNm3T00UfnfO7atWsVj8enfhYtWjTrcb3RibzjpjL5t/vZ3+bYtve3HbtfvuZeILYgnzdTSqlZ2BPE3IE9xdat6bwxeXyXYzd9fJdjNy2osZuoWVPPlUq7XwpKzMUyFm+J95hBmJ+p4wbhPPvlyv2xzfWzfe6Ye3jHzyUo98ZAEJnO+6o1uv/1X//1oH83NzfrhBNOUEdHhz796U+XdKyjjjpKTz/9tH71q1/pox/9qC666CI9++yzOZ/b19enZDI59bNz585Zjxtrqs87bms0/3Y/+9sc2/b+tmP3y9fcC8QW5PNmSik1C3uCmDuwp9i6NZ03Jo/vcuymj+9y7KYFNXYTNWvquVJp90tBiblYxuIt8R4zCPMzddwgnGe/XLk/trl+ts8dcw/v+LkE5d4YCCLTeV+1RvdHP/pR3X///TMev/LKK/Uv//IvJR2roaFBXV1dOvHEE7V27Vodd9xx+vKXv5zzuY2NjYrFYgf9zKY1GlFPV3vObT1d7WqN5v+kFz/72xzb9v62Y/fLz/gdcxq0fElHzm3Ll3SoY87sH1vid+xK7G9CKTULe4KYO7Cn2Lo1nTcmj+9y7KaP73LspgU19mJrNlYg/ti0+EuZa6nrUsr9kqk4TJ3LUo4bb6rP+9z4tF8cS73HDML8TB23lHVzvWZts7l+ts8dcw/v+LkE5d4YCCLTeV+1Rvedd96pD3zgA9q8efPUYx//+Md1zz336KGHHvJ17P379x/0+Ufl6mxr1ure7hkLfuCbPzvbmo3tb3Ns2/vbjt0vP+PHmxu07rylM34RWb6kQ+vPW5r387n9jl2J/RFe5A7KYTpvTB7f5dhNH9/l2E1zOXZJWlgg/oXT4i9lrqWuSyn3S6biMHUuSznugrlNeZ974HOmpdLvMYMwP1PHLWXdXK9Z22yun+1zx9zDO74fLscOlMt03tdls9msryOU4K677tLll1+u//zP/9Q3v/lN/eAHP9BDDz2kN7zhDUUfo6+vT2eddZaOOOIIpVIp3XXXXVq/fr1+/OMf62//9m8L7u95nuLxuJLJ5Kz/VW0gkVYqM6lUZkKt0Xq1RiMlLbSf/W2ObXt/27H75Wf8ZHpcg8PjU/t2zGko2OSu1NiV2N+kYmoW9gQ5d2BPobo1nTcmj+9y7KaP73LspgU99kI1uyuRljct/lg0clCTe7pS5lrqupRyv2QqDlPnspTj7t47quToxNRz4031BzVrpyv1HjMI8zN13FLWzfWatc3m+tk+d8w9vOPnY/veGAgiU3lf1Ua3JP3TP/2TrrrqKh122GF66KGH1NXVVdL+H/rQh/Tggw/qT3/6k+LxuJYuXaqrr766qCa3FPybAgAHo2YB91C3gFuoWcAt1CzgFmoWqB6jH/hz1VVX5Xz8sMMO0wknnKB/+qd/mnrs5ptvLuqY3/zmNysSGwAAAAAAAACgNhhtdP/mN7/J+XhXV5c8z5vaXldXZzIMAAAAAAAAAEANM9ro9vslkwAAAAAAAAAAFHJItQZKJpP685//POPxP//5z/I8r1phAAAAAAAAAABqTNUa3e9///t19913z3j8nnvu0fvf//5qhQEAAAAAAAAAqDFVa3T/6le/0ooVK2Y8ftppp+lXv/pVtcIAAAAAAAAAANSYqjW6x8bGNDk5OePxiYkJjY6OVisMAAAAAAAAAECNqVqj++STT9btt98+4/Fbb71VJ554YrXCAAAAAAAAAADUmEi1Brrxxht1+umn65lnntHb3vY2SdKDDz6oJ554Qv/xH/9RrTAAAAAAAAAAADWmau/oPvXUU/WLX/xCixYt0j333KMf/vCH6urq0pYtW/TWt761WmEAAAAAAAAAAGpM1d7RLUnHH3+87rzzzmoOCQAAAAAAAACocVVtdB+QyWQ0Pj5+0GOxWMxGKAAAAAAAAAAAx1Xto0vS6bQuv/xyzZs3Ty0tLWprazvoBwAAAAAAAACAclSt0f3pT39aP/3pT3XLLbeosbFR3/jGN/S5z31OCxYs0He+851qhQEAAAAAAAAAqDFV++iSH/7wh/rOd76j0047TZdccone+ta3qqurS4sXL9add96pCy+8sFqhAAAAAAAAAABqSNXe0f3nP/9Zf/EXfyHp5c/j/vOf/yxJ6unp0SOPPFKtMAAAAAAAAAAANaZqje6/+Iu/0B//+EdJ0l/+5V/qnnvukfTyO73nzp1brTAAAAAAAAAAADWmao3uSy65RM8884wk6ZprrtHXvvY1RaNRXXnllfr0pz9drTAAAAAAAAAAADXG+Gd079+/X1/84hd13333aXx8XLt379YNN9yg5557Tk8++aS6urq0dOlS02EAAAAAAAAAAGqU8Ub36tWr9dnPflann366mpqa9OUvf1kvvviivvWtb2nx4sWmhwcAAAAAAAAA1DjjH13yne98R//0T/+kH//4x/r+97+vH/7wh7rzzju1f/9+00MDAAAAAAAAAELAeKN7x44desc73jH179NPP111dXXavXu36aEBAAAAAAAAACFgvNE9OTmpaDR60GP19fWamJgwPTQAAAAAAAAAIASMf0Z3NpvVxRdfrMbGxqnHMpmMPvKRj6ilpWXqse9973tFHW/t2rX63ve+p+eee05NTU065ZRTtH79eh111FEVj71cA4m0UplJeaMTijfVa040os62ZuP7BmH/MGPtYAN5B9QWatoe1j68Sjn3pvLExfwLwrqZsiuRljct3tZoRAsDHC8QBK7VeZCwdggjU3lvvNF90UUXzXjsgx/8YNnHe/jhh/Wxj31Mb3zjGzU5OalVq1bpjDPO0LPPPntQ49yW7UMjWrVpqx7rH5p6rKerXat7u7W4PX98fvYNwv5hxtrBBvIOqC3UtD2sfXiVcu5N5YmL+ReEdTPFtXiBIKBuysfaIYxM5n1dNpvN+g3Qppdeeknz5s3Tww8/rOXLlxd8vud5isfjSiaTisViFY1lIJHW1fduOehEHdDT1a515y3N+y6HcvcNwv5hxtqZZbJmXUbeIcio29JR0/aw9uGt2VLOvak8cTH/grBupuxKpPU/88S7/rylgXhnd1hrFsHkWp3bMFvNsnYII9N5b/wd3aYlk0lJ0mte85qc28fGxjQ2Njb1b8/zjMWSykzmPFGStLl/SKnMpJF9g7B/mLF2lVXNmnUZeYcgoW79o6btCePaU7MvK+Xcm8oTF/MvCOtmilcgXi8zqYVVjkmiZhFsrtV5NRRbs6wdwsh03hv/MkqT9u/fr09+8pM69dRTdeyxx+Z8ztq1axWPx6d+Fi1aZCwebzT/F2ymMrNv97NvEPYPM9ausqpZsy4j7xAk1K1/1LQ9YVx7avZlpZx7U3niYv4FYd1MCWq81CyCLKh1Y1OxNcvaIYxM573Tje6Pfexj+u1vf6u777571uf09fUpmUxO/ezcudNYPLGm+rzbW6Ozb/ezbxD2DzPWrrKqWbMuI+8QJNStf9S0PWFce2r2ZaWce1N54mL+BWHdTAlqvNQsgiyodWNTsTXL2iGMTOe9s43uyy+/XD/60Y/00EMPqbOzc9bnNTY2KhaLHfRjSms0op6u9pzberra1Rqd/ZNi/OwbhP3DjLWrrGrWrMvIOwQJdesfNW1PGNeemn1ZKefeVJ64mH9BWDdTYgXijVmKl5pFkLlW59VQbM2ydggj03nvXKM7m83q8ssv16ZNm/TTn/5URx55pO2QpnS2NWt1b/eME3bgm0PzfZi6n32DsH+YsXawgbwDags1bQ9rH16lnHtTeeJi/gVh3UxZWCDeIHwRJRA0rtV5kLB2CCPTeV+XzWazvo5QZZdddpnuuusu/eAHP9BRRx019Xg8HldTU1PB/avxDdUDibRSmUmlMhNqjdarNRop+kT52TcI+4cZa2cG3yqfH3mHIKJuy0dN2xPmtQ97zZZy7k3liYv5F4R1M2VXIi1vWryxaCRQTe6w1yyCybU6r6ZCNcvaIYxM5b1zje66urqcj99xxx26+OKLC+7PTQHgFmoWcA91C7iFmgXcQs0CbqFmgepx7gN/HOvLAwAAAAAAAAAMc+4zugEAAAAAAAAAmI5GNwAAAAAAAADAaTS6AQAAAAAAAABOo9ENAAAAAAAAAHAajW4AAAAAAAAAgNNodAMAAAAAAAAAnEajGwAAAAAAAADgNBrdAAAAAAAAAACn0egGAAAAAAAAADiNRjcAAAAAAAAAwGk0ugEAAAAAAAAATqPRDQAAAAAAAABwGo1uAAAAAAAAAIDTaHQDAAAAAAAAAJxGoxsAAAAAAAAA4DQa3QAAAAAAAAAAp9HoBgAAAAAAAAA4jUY3AAAAAAAAAMBpNLoBAAAAAAAAAE6j0Q0AAAAAAAAAcBqNbgAAAAAAAACA02h0AwAAAAAAAACcFrEdQKkeeeQRffGLX9STTz6pP/3pT9q0aZPOPfdc22FVzEAirVRmUt7ohOJN9ZoTjaizrdl2WABmQc0CAArhtaJ2cC4BIDeuj+Vj7YDKca7RPTIyouOOO06XXnqp3vOe99gOp6K2D41o1aateqx/aOqxnq52re7t1uL2FouRAciFmgUAFMJrRe3gXAJAblwfy8faAZXl3EeXnHXWWbrxxhvV29trO5SKGkikZ1zcJGlz/5Cu3bRVA4m0pcgA5ELNAgAK4bWidnAuASA3ro/lY+2AynPuHd2lGhsb09jY2NS/Pc+zGM3sUpnJGRe3Azb3DymVmaxyRIAd1CzgHlfqFqi2oL5WULOlC+q5RDhQswgyro8zFVuzrB1Qec69o7tUa9euVTwen/pZtGiR7ZBy8kYn8m5PZfJvB2oFNQu4x5W6BaotqK8V1GzpgnouEQ7ULIKM6+NMxdYsawdUXs03uvv6+pRMJqd+du7caTuknGJN9Xm3t0bzbwdqBTULuMeVugWqLaivFdRs6YJ6LhEO1CyCjOvjTMXWLGsHVF7Nf3RJY2OjGhsbbYdRUGs0op6udm3O8WcrPV3tao3W/KkCJFGzgItcqVug2oL6WkHNli6o5xLhQM0iyLg+zlRszbJ2QOXV/Du6XdHZ1qzVvd3q6Wo/6PED37bb2dZsKTIAuVCzAIBCeK2oHZxLAMiN62P5WDug8uqy2WzWdhClGB4eVn9/vyRp2bJluvnmm7VixQq95jWv0RFHHFFwf8/zFI/HlUwmFYvFTIdbsoFEWqnMpFKZCbVG69UajXBxQ6hRs4B7gl63QLUF/bWCmi1e0M8lwoGaRRBxfZxdoZpl7YDKce7vIH79619rxYoVU/++6qqrJEkXXXSRvv3tb1uKqnK4mAFuoWYBAIXwWlE7OJcAkBvXx/KxdkDlONfoPu200+TYm9ABAAAAAAAAAAbxGd0AAAAAAAAAAKfR6AYAAAAAAAAAOI1GNwAAAAAAAADAaTS6AQAAAAAAAABOo9ENAAAAAAAAAHAajW4AAAAAAAAAgNNodAMAAAAAAAAAnEajGwAAAAAAAADgNBrdAAAAAAAAAACn0egGAAAAAAAAADiNRjcAAAAAAAAAwGk0ugEAAAAAAAAATqPRDQAAAAAAAABwGo1uAAAAAAAAAIDTaHQDAAAAAAAAAJxGoxsAAAAAAAAA4DQa3QAAAAAAAAAAp9HoBgAAAAAAAAA4jUY3AAAAAAAAAMBpNLoBAAAAAAAAAE6j0Q0AAAAAAAAAcBqNbgAAAAAAAACA0yK2AyjX1772NX3xi1/UCy+8oOOOO05f/epXdfLJJ9sOS5I0kEgrlZmUNzqheFO95kQj6mxrNr6v63bvHVVydGJq7rGmei2Y22Q7LDggzHUDAAg+Xqcqw9Q67vEySoyMy8tMKtYUUVtzg+bHolWNwcX74FLWopQ1BlwW5ut9mOfuF2sHVI6Tje7vfve7uuqqq3TrrbfqTW96kzZs2KAzzzxTzz//vObNm2c1tu1DI1q1aase6x+aeqynq12re7u1uL3F2L6uC/Pc4Q+5AwAIMl6nKsPUOu4YGlFfjuOu6e3WEa86rqkYXMyRUmIuZY0Bl7lYy5US5rn7xdoBleXkR5fcfPPNWrlypS655BIdffTRuvXWW9Xc3KxvfetbVuMaSKRnXKAkaXP/kK7dtFUDibSRfV23e+9o3rnv3jtqKTIEXZjrBgAQfLxOVYapddzjZWY0YA8cd9WmrdrjZYzH4OJ9cClrUcoaAy4L8/U+zHP3i7UDKs+5d3SPj4/rySefVF9f39RjhxxyiE4//XT94he/mPH8sbExjY2NTf3b8zxjsaUykzMuUAds7h9SKjNpZF/XJUcn8s49OToR+D/dROWUUrNhrhsgSKr5Wgu4JKivU67VrKl1TIyM5z1uYmR86uM1TMXg4n1wKWtRyhpjdq7VbBgF9XpfDWGe+2yKrVnWDqg8597RPTg4qH379mn+/PkHPT5//ny98MILM56/du1axePxqZ9FixYZi80bnci7PZWZfbuffV0X5rljplJqltwBgqGar7WAS4L6OuVazZpaR69AA2H6dmMxBDRH8ikl5lLWGLNzrWbDyMVarpQwz302xdYsawdUnnON7lL19fUpmUxO/ezcudPYWLGm+rzbW6Ozb/ezr+vCPHfMVErNkjtAMFTztRZwSVBfp1yrWVPrGIvm/+PW6duNxRDQHMmnlJhLWWPMzrWaDSMXa7lSwjz32RRbs6wdUHnONbo7Ojp06KGHas+ePQc9vmfPHr32ta+d8fzGxkbFYrGDfkxpjUbU09Wec1tPV7ta89zI+dnXdfGm+rxzjxe4+KO2lFKzYa4bIEiq+VoLuCSor1Ou1aypdWxrach73LaWBuMxuHgfXMpalLLGmJ1rNRtGQb3eV0OY5z6bYmuWtQMqz7lGd0NDg0488UQ9+OCDU4/t379fDz74oN7ylrdYjEzqbGvW6t7uGReqA9+Y29nWbGRf1y2Y25R37kH7XEIER5jrBgAQfLxOVYapdZwfi2rNLMdd09t90GdHm4rBxfvgUtailDUGXBbm632Y5+4XawdUXl02m83aDqJU3/3ud3XRRRfptttu08knn6wNGzbonnvu0XPPPTfjs7tfzfM8xeNxJZNJY/8lfCCRViozqVRmQq3RerVGI0VfoPzs67rde0eVHJ2Ymnu8qT6QN/eormJqNsx1AwRRNV5rAZcE/XXKlZo1tY57vIwSI+PyMpOKRSNqa2mYtQFrKgYX74NLWYtS1hiFuVKzYRT0671JYZ57IYVqlrUDKsfJv4N43/vep5deeknXX3+9XnjhBR1//PF64IEHCja5q8XPBSnMF7MFc5sCf0OPYApz3QAAgo/XqcowtY7zY9Gim66mYnDxPriUtShljQGXhfl6H+a5+8XaAZXjZKNbki6//HJdfvnltsMAAAAAAAAAAFjm3Gd0AwAAAAAAAAAwHY1uAAAAAAAAAIDTnP3oknId+O5Nz/MsRwK4rbW1VXV1dcbHoWaByqhWzUrULVAJ1CzgFmoWcAs1C7il2JoNXaM7lUpJkhYtWmQ5EsBt1fqWd2oWqIxq1axE3QKVQM0CbqFmAbdQs4Bbiq3ZuuyB/7QUEvv379fu3bsL/pcAz/O0aNEi7dy5s2oXv1rB2pXHtXWr1n8Bp2YLY+7MvZi5V/NdK8XUbZjOHXOtTabnSs1WVy3Pr5bnJgVnftRscDD3cM5dKm3+1CwOYO3tMVGzoXtH9yGHHKLOzs6inx+LxUj0MrF25WHdDkbNFo+5M/egKKVugxi/Kcy1NtXCXKnZV9Ty/Gp5blLtz286arY4zD2cc5eCN39q1g2svT2VXHu+jBIAAAAAAAAA4DQa3QAAAAAAAAAAp9HonkVjY6NuuOEGNTY22g7FOaxdeVg3f8K8fsydubvI9fhLwVxrU5jmKtX+fGt5frU8N6n251euMK8Lcw/n3CW35+9y7K5j7e0xsfah+zJKAAAAAAAAAEBt4R3dAAAAAAAAAACn0egGAAAAAAAAADiNRjcAAAAAAAAAwGk0ugEAAAAAAAAATqPRDQAAAAAAAABwGo1uAAAAAAAAAIDTaHQDAAAAAAAAAJxGoxsAAAAAAAAA4DQa3QAAAAAAAAAAp9HoBgAAAAAAAAA4jUY3AAAAAAAAAMBpNLoBAAAAAAAAAE4LXaM7m83K8zxls1nboQAoAjULuIe6BdxCzQJuoWYBt1CzQPWErtGdSqUUj8eVSqVshwKgCNQs4B7qFnALNQu4hZoF3ELNAtUTukY3AAAAAAAAAKC20OgGAAAAAAAAADiNRjcAAAAAAAAAwGk0ugEAAAAAAAAATqPRDQAAAAAAAABwWsR2AKXat2+fPvvZz+pf/uVf9MILL2jBggW6+OKL9ZnPfEZ1dXW2w5MkDSTSSmUm5Y1OKN5UrznRiDrbmo3vWwk2x7c9d79cj99l5K09rL0dYZ474CJqNrdS18XUOu5KpOVNO25rNKKFsxzXVAylHHf33lElRyemnhtrqteCuU0VibeU55t6rimuxYvy2D53Yb43tj1+KdfGoLG9doANpvLeuUb3+vXrdcstt2jjxo065phj9Otf/1qXXHKJ4vG4PvGJT9gOT9uHRrRq01Y91j809VhPV7tW93ZrcXuLsX0rweb4tuful+vxu4y8tYe1tyPMcwdcRM3mVuq6mFrHUo7rWgwm1zgI61YK1+JFeWyfuzDfG4d9fD9cjh0ol8m8d+6jS37+85/r3e9+t84++2y97nWv03vf+16dccYZevzxx22HpoFEesaJkqTN/UO6dtNWDSTSRvatBJvj2567X67H7zLy1h7W3o4wzx1wETWbW6nrYmoddxU47q5pxzUVQynH3b13NO9zd+8dLTveUp5v6rmmuBYvymP73IX53tj2+KVcG4PG9toBNpjOe+fe0X3KKafo9ttv1+9+9zu94Q1v0DPPPKPNmzfr5ptvzvn8sbExjY2NTf3b8zxjsaUykzNO1AGb+4eUykwa2bcSbI5ve+5+uR5/0JRSs+StPay9HUGdezVfawGXULO5lbouptbRK3BcLzOphYZjKOW4ydGJvM9Njk5M/Zm+yTU29VxTXIs3F9s16wLb5y7M98a2xy/l2lgtxdas7bUDbDCd9869o/uaa67R+9//fv3lX/6l6uvrtWzZMn3yk5/UhRdemPP5a9euVTwen/pZtGiRsdi80Ym821OZ2bf72bcSbI5ve+5+uR5/0JRSs+StPay9HUGdezVfawGXULO5lbouptaxlOO6FoPJNQ7CupXCtXhzsV2zLrB97sJ8bxz28XMptmaDGDtgmum8d67Rfc899+jOO+/UXXfdpaeeekobN27UTTfdpI0bN+Z8fl9fn5LJ5NTPzp07jcUWa6rPu701Ovt2P/tWgs3xbc/dL9fjD5pSapa8tYe1tyOoc6/may3gEmo2t1LXxdQ6lnJc12IwucZBWLdSuBZvLrZr1gW2z12Y743DPn4uxdZsEGMHTDOd9841uj/96U9Pvau7u7tbf//3f68rr7xSa9euzfn8xsZGxWKxg35MaY1G1NPVnnNbT1e7WqOzf1KMn30rweb4tuful+vxB00pNUve2sPa2xHUuVfztRZwCTWbW6nrYmodYwWOG5t2XFMxlHLceFN93ufGp/3iaHKNTT3XFNfizcV2zbrA9rkL872x7fFLuTZWS7E1a3vtABtM571zje50Oq1DDjk47EMPPVT79++3FNErOtuatbq3e8YJO/DNoZ1tzUb2rQSb49ueu1+ux+8y8tYe1t6OMM8dcBE1m1up62JqHRcWOO7Cacc1FUMpx10wtynvc6d/Bq3JNTb1XFNcixflsX3uwnxvbHv8Uq6NQWN77QAbTOd9XTabzfo6QpVdfPHF+slPfqLbbrtNxxxzjH7zm9/owx/+sC699FKtX7++4P6e5ykejyuZTBr7L+EDibRSmUmlMhNqjdarNRop+kT52bcSbI5ve+5+uR5/UBVTs+StPay9HUGfezVeawGXULO5lbouptZxVyItb9pxY9HIQU3uasRQynF37x1VcnRi6rnxpvpZGzkm19jUc01xLd58eJ2dne1zF+Z7Y9vjl3JtrLZCNWt77QAbTOW9c43uVCql6667Tps2bdKLL76oBQsW6AMf+ICuv/56NTQ0FNyfmwLALdQs4B7qFnALNQu4hZoF3ELNAtXj3Af+tLa2asOGDdqwYYPtUAAAAAAAAAAAAeDcZ3QDAAAAAAAAADAdjW4AAAAAAAAAgNNodAMAAAAAAAAAnEajGwAAAAAAAADgNBrdAAAAAAAAAACn0egGAAAAAAAAADiNRjcAAAAAAAAAwGk0ugEAAAAAAAAATqPRDQAAAAAAAABwGo1uAAAAAAAAAIDTaHQDAAAAAAAAAJxGoxsAAAAAAAAA4DQa3QAAAAAAAAAAp9HoBgAAAAAAAAA4LWI7gFo0kEgrlZmUNzqheFO95kQj6mxrNr5vEPYPM9YONpB34cR5ByqPugqvUs69qTxxMf+CsG6m7Eqk5U2LtzUa0cIAx4tXuJZrtYS1Lx9rhzAylfc0uits+9CIVm3aqsf6h6Ye6+lq1+rebi1ubzG2bxD2DzPWDjaQd+HEeQcqj7oKr1LOvak8cTH/grBuprgWL17BubOHtS8fa4cwMpn3fHRJBQ0k0jNOlCRt7h/StZu2aiCRNrJvEPYPM9YONpB34cR5ByqPugqvUs69qTxxMf+CsG6m7CoQ766AxYtXuJZrtYS1Lx9rhzAynfc0uisolZmccaIO2Nw/pFRm0si+Qdg/zFg72EDehRPnHag86iq8Sjn3pvLExfwLwrqZ4hWI1wtYvHiFa7lWS1j78rF2CCPTeU+ju4K80Ym821OZ2bf72TcI+4cZawcbyLtw4rwDlUddhVcp595UnriYf0FYN1Ncixev4NzZw9qXj7VDGJnOexrdFRRrqs+7vTU6+3Y/+wZh/zBj7WADeRdOnHeg8qir8Crl3JvKExfzLwjrZopr8eIVnDt7WPvysXYII9N5T6O7glqjEfV0tefc1tPVrtbo7N/96WffIOwfZqwdbCDvwonzDlQedRVepZx7U3niYv4FYd1MiRWINxawePEK13KtlrD25WPtEEam855GdwV1tjVrdW/3jBN24JtDO9uajewbhP3DjLWDDeRdOHHegcqjrsKrlHNvKk9czL8grJspCwvEuzBg8eIVruVaLWHty8faIYxM531dNpvN+jqCYzzPUzweVzKZVCwWMzLGQCKtVGZSqcyEWqP1ao1Gij5RfvYNwv5hxtqZUY2adRl5F05BP+/ULVwU9LoyKew1W8q5N5UnLuZfENbNlF2JtLxp8caikUA1ucNes/m4lmu1hLWfXaGaZe0QRqbynr+DMMDPifF7Um3vH2asHWwg78KJ8w5UHnUVXqWce1N54mL+BWHdTFnY1qyFtoNAWVzLtVrC2pePtUMYmcp7ProEAAAAAAAAAOA0Gt0AAAAAAAAAAKfR6AYAAAAAAAAAOI1GNwAAAAAAAADAaTS6AQAAAAAAAABOo9ENAAAAAAAAAHAajW4AAAAAAAAAgNNodAMAAAAAAAAAnEajGwAAAAAAAADgNBrdAAAAAAAAAACn0egGAAAAAAAAADiNRjcAAAAAAAAAwGk0ugEAAAAAAAAATqPRDQAAAAAAAABwGo1uAAAAAAAAAIDTIrYDKMeuXbt09dVX6/7771c6nVZXV5fuuOMOnXTSSbZD820gkVYqMylvdELxpnrNiUbU2dZsOywAyIlrFoBq4XqDICAPASCYXL4+uxw7EDTONboTiYROPfVUrVixQvfff78OO+wwbdu2TW1tbbZD82370IhWbdqqx/qHph7r6WrX6t5uLW5vsRgZAMzENQtAtXC9QRCQhwAQTC5fn12OHQgi5z66ZP369Vq0aJHuuOMOnXzyyTryyCN1xhln6PWvf73t0HwZSKRnXNwkaXP/kK7dtFUDibSlyABgJq5ZAKqF6w2CgDwEgGBy+frscuxAUDn3ju777rtPZ555ps4//3w9/PDDWrhwoS677DKtXLky5/PHxsY0NjY29W/P86oVaklSmckZF7cDNvcPKZWZrHJEgB2u1GzYcc3CdNQtTOJ6U3nUbOnIQ9hEzQKzC+L1udiaDWLsgOuce0f3H/7wB91yyy1asmSJfvzjH+ujH/2oPvGJT2jjxo05n7927VrF4/Gpn0WLFlU54uJ4oxN5t6cy+bcDtcKVmg07rlmYjrqFSVxvKo+aLR15CJuoWWB2Qbw+F1uzQYwdcJ1zje79+/frhBNO0Jo1a7Rs2TJ9+MMf1sqVK3XrrbfmfH5fX5+SyeTUz86dO6sccXFiTfV5t7dG828HaoUrNRt2XLMwHXULk7jeVB41WzryEDZRs8Dsgnh9LrZmgxg74DrnPrrk8MMP19FHH33QY3/1V3+le++9N+fzGxsb1djYWI3QfGmNRtTT1a7NOf5spaerXa1R504VUBZXajbsuGZhOuoWJnG9qTxqtnTkIWyiZoHZBfH6XGzNBjF2wHXOvaP71FNP1fPPP3/QY7/73e+0ePFiSxFVRmdbs1b3dqunq/2gxw98225nW7OlyABgJq5ZAKqF6w2CgDwEgGBy+frscuxAUNVls9ms7SBK8cQTT+iUU07R5z73OV1wwQV6/PHHtXLlSt1+++268MILC+7veZ7i8biSyaRisVgVIi7NQCKtVGZSqcyEWqP1ao1GuLgh1IJes2HHNQu5ULcwgeuNOdRs8chDBAE1C8wU5OtzoZoNcuyAa5z7O4g3vvGN2rRpk/r6+vT5z39eRx55pDZs2FBUk9sFXMwAuIRrFoBq4XqDICAPASCYXL4+uxw7EDTONbol6ZxzztE555xjOwwAAAAAAAAAQAA49xndAAAAAAAAAABMR6MbAAAAAAAAAOA0Gt0AAAAAAAAAAKfR6AYAAAAAAAAAOI1GNwAAAAAAAADAaTS6AQAAAAAAAABOo9ENAAAAAAAAAHAajW4AAAAAAAAAgNNodAMAAAAAAAAAnEajGwAAAAAAAADgNBrdAAAAAAAAAACn0egGAAAAAAAAADiNRjcAAAAAAAAAwGkR2wGgsgYSaaUyk/JGJxRvqtecaESdbc1O7L/HyygxMi4vM6lYU0RtzQ2aH4tWLfYwY+1QLpu5Q94CwUJNQgpOHgQljmL5vQ8OOlPnw9Rxd+8dVXJ0Yuq4saZ6LZjb5Pu4YRHm+0PmHt7xAZTGVM3S6K4h24dGtGrTVj3WPzT1WE9Xu1b3dmtxe0ug998xNKK+HPuu6e3WEVWIPcxYO5TLZu6Qt0CwUJOQgpMHQYmjWH7vg4PO1Plw7bhhEeb7Q+Ye3vEBlMZkzfLRJTViIJGekSSStLl/SNdu2qqBRDqw++/xMjNu7g/su2rTVu3xMkZjDzPWDuWymTvkLRAs1CSk4ORBUOIolt/74KAzdT5MHXf33tG8x929d7Ss44ZFmO8PmXt4xwdQGtM1S6O7RqQykzOS5IDN/UNKZSYDu39iZDzvvomRcWNjhx1rh3LZzB3yFggWahJScPIgKHEUy+99cNCZOh+mjpscnch73OToRFnHDYsw3x8y9/COD6A0pmuWRneN8ArcdKUy+bfb3N8rkMQFt/uMPcxYO5TLZu6Qt0CwUJOQgpMHQYmjWH7vg4PO1Plw7bhhEeb7Q+Ye3vEBlMZ0zdLorhGxpvq821uj+bfb3D8Wzf9R8QW3+4w9zFg7lMtm7pC3QLBQk5CCkwdBiaNYfu+Dg87U+XDtuGER5vtD5h7e8QGUxnTN0uiuEa3RiHq62nNu6+lqV2uBm2Sb+7e1NOTdt62lwdjYYcfaoVw2c4e8BYKFmoQUnDwIShzF8nsfHHSmzoep48ab6vMeN17gl/OwC/P9IXMP7/gASmO6ZqvS6H7ooYeqMUyodbY1a3Vv94xkOfCtpZ1tzYHdf34sqjWz7Lumt1vzY1GjsYcZa4dy2cwd8hYIFmoSUnDyIChxFMvvfXDQmTofpo67YG5T3uMumNtU1nHDIsz3h8w9vOMDKI3pmq3LZrNZX0coQmNjozo7O3XJJZfooosu0qJFi0wPOSvP8xSPx5VMJhWLxazFYcpAIq1UZlKpzIRao/VqjUZKShKb++/xMkqMjMvLTCoWjaitpaGkm3u/sYdZkNeu1mvWdTZzJ8h5G3bUbThRk+6qZM0GJQ+CEkex/N4HB52p82HquLv3jio5OjF13HhTfaCa3EF/nQ3z/SFzD+/4+QS9ZgEbTNVsVRrdg4OD+ud//mdt3LhR//Vf/6W/+Zu/0Yc+9CGde+65amio7p/jcYEB3ELNAu6hbgG3ULOAW6hZwC3ULFA9Vfnoko6ODl155ZV6+umn9atf/UpveMMbdNlll2nBggX6xCc+oWeeeaYaYQAAAAAAAAAAalDVv4zyhBNOUF9fny6//HINDw/rW9/6lk488US99a1v1X/9139VOxwAAAAAAAAAgOOq1uiemJjQv/3bv+kd73iHFi9erB//+Mf6X//rf2nPnj3q7+/X4sWLdf7551crHAAAAAAAAABAjYhUY5CPf/zj+td//Vdls1n9/d//vb7whS/o2GOPndre0tKim266SQsWLKhGOAAAAAAAAACAGlKVRvezzz6rr371q3rPe96jxsbGnM/p6OjQQw89VI1wAAAAAAAAAAA1pCofXXLDDTfo/PPPn9Hknpyc1COPPCJJikQi+uu//utqhAMAAAAAAAAAqCFVaXSvWLFCf/7zn2c8nkwmtWLFimqEAAAAAAAAAACoUVVpdGezWdXV1c14fGhoSC0tLdUIAQAAAAAAAABQo4x+Rvd73vMeSVJdXZ0uvvjigz66ZN++fdqyZYtOOeUUkyEAAAAAAAAAAGqc0UZ3PB6X9PI7ultbW9XU1DS1raGhQW9+85u1cuVKkyEAAAAAAAAAAGqc0Ub3HXfcIUl63etep0996lN8TAkAAAAAAAAAoOKq8hndN9xwgxobG/WTn/xEt912m1KplCRp9+7dGh4erkYIAAAAAAAAAIAaZfQd3Qds375db3/727Vjxw6NjY3pb//2b9Xa2qr169drbGxMt956azXCAAAAAAAAAADUoKq8o/uKK67QSSedpEQicdDndPf29urBBx+sRggAAAAAAAAAgBpVlXd0P/roo/r5z3+uhoaGgx5/3etep127dlUjBAAAAAAAAABAjapKo3v//v3at2/fjMcHBgbU2tpa9nHXrVunvr4+XXHFFdqwYYOPCF8VVyKtVGZS3uiE4k31mhONqLOtuSr72xw7CPv74XfsPV5GiZFxeZlJxZoiamtu0PxYtCrj2153m+cNbnO55v1Kpsc1ODwuLzOhWFO9OloaFG9uKLwjYJHtuoGbdiXS8qblTWs0ooWz5E0pOVZqPpo6Ns8NVhylvL6auqa5fq20HX+Y7w+Ze3jH98Pl2IGgqUqj+4wzztCGDRt0++23S5Lq6uo0PDysG264Qe94xzvKOuYTTzyh2267TUuXLq1kqNo+NKJVm7bqsf6hqcd6utq1urdbi9tbjO5vc+wg7O+H37F3DI2oL8f+a3q7dQTnHcjJ5Zr3a/feUV197xY9um1w6rHlSzq07rylWjC3Kc+egD226wZuKiVvTD03KHHU8nODEkcpr6+mrmmuXyttxx/m+0PmHt7x/XA5diCIqvIZ3V/60pf02GOP6eijj1Ymk9Hf/d3fTX1syfr160s+3vDwsC688EJ9/etfV1tbW8XiHEikZ1xgJGlz/5Cu3bRVA4m0sf1tjh2E/f3wO/YeLzOjyX1g/1WbtmqPlzE2vu11t3ne4DaXa96vZHp8xi/hkvTItkFdc+8WJdPjRscHymG7buCmXQXyZte0vCklx0rNR1PH5rkq6/mmnlvK66upa5rr10rb8Yf5/pC5h3d8P1yOHQiqqryju7OzU88884zuvvtubdmyRcPDw/rQhz6kCy+88KAvpyzWxz72MZ199tk6/fTTdeONN+Z97tjYmMbGxqb+7XnerM9NZSZnXGAO2Nw/pFRmMu9Yfva3OXYQ9vfD79iJkfG8+ydGxvN+hEmYz7sJpdQs7HG55v0aHB6f8Uv4AY9sG9Tg8HjoPsKEug0+23WDYCm2Zr0CeeNlJrXw//27lBwrNR9NHZvnqqznm3puKa+vpq5pQb1WFluztuMP8/0hcw/v+Lm4UrNALapKo1uSIpGIPvjBD/o+zt13362nnnpKTzzxRFHPX7t2rT73uc8V9VxvdCLv9lQm/3Y/+9scOwj7++E79gIvHgW3h/i8m1BKzcIel2ve9/gFjm+jbmyjboPPdt0gWIqt2VLyxtRzgxJHLT83KHGU8vpq6poW1GuliZo1IdT3h8w9tOPn4krNArXI2EeX3HfffZqYmJj6//l+irVz505dccUVuvPOOxWNFvclgX19fUomk1M/O3funPW5sab6vMdqjebf7md/m2MHYX8/fMcezf/fewpuD/F5N6GUmoU9Lte87/ELHN9G3dhG3Qaf7bpBsBRbs6XkjannBiWOWn5uUOIo5fXV1DUtqNdKEzVrQqjvD5l7aMfPxZWaBWqRsUb3ueeeq0QiMfX/Z/vp7e0t+phPPvmkXnzxRZ1wwgmKRCKKRCJ6+OGH9ZWvfEWRSET79u2bsU9jY6NisdhBP7NpjUbU09Wec1tPV7taCzQ8/exvc+wg7O+H37HbWhry7t/Wkv8jCMJ83k0opWZhj8s171fHnAYtX9KRc9vyJR3qmBOujy2RqFsX2K4bBEuxNRsrkDfT3wxQSo6Vmo+mjs1zVdbzTT23lNdXU9e0oF4ri61Z2/GH+f6QuYd3/FxcqVmgFhlrdO/fv1/z5s2b+v+z/eRqTs/mbW97m7Zu3aqnn3566uekk07ShRdeqKefflqHHnqor5g725q1urd7xoXmwDfedrY1G9vf5thB2N8Pv2PPj0W1Zpb91/R25/18br/j2153m+cNbnO55v2KNzdo3XlLZ/wyvnxJh9aftzR0n88NN9iuG7hpYYG8WTgtb0rJsVLz0dSxea7Ker6p55by+mrqmub6tdJ2/GG+P2Tu4R3fD5djB4KqLpvNZk0OMDExobe//e269dZbtWTJkoof/7TTTtPxxx+vDRs2FPV8z/MUj8eVTCZn/a9qA4m0UplJpTITao3WqzUaKekC42d/m2MHYX8//I69x8soMTIuLzOpWDSitpaGgk3uSo1ve91tnrdCiqlZ2ONyzfuVTI9rcHh8avyOOQ00uf8f6ja4bNcNgqlQze5KpOVNy5tYNHJQk3u6UnKs1Hw0dWyeG6w4Snl9NXVNC/q1slDN2o4/zPeHzD284+cT9JoFaonxRrckHXbYYfr5z3/uTKMbQHBQs4B7qFvALdQs4BZqFnALNQtUj7GPLpnugx/8oL75zW8aOfbPfvazopvcAAAAAAAAAIDaU5VPtp+cnNS3vvUt/eQnP9GJJ56olpaWg7bffPPN1QgDAAAAAAAAAFCDqtLo/u1vf6sTTjhBkvS73/3uoG11dXXVCAEAAAAAAAAAUKOq0uh+6KGHqjEMAAAAAAAAACCEqvIZ3QAAAAAAAAAAmFKVd3RL0q9//Wvdc8892rFjh8bHxw/a9r3vfa9aYQAAAAAAAAAAakxV3tF9991365RTTtF///d/a9OmTZqYmNB//dd/6ac//ani8Xg1QgAAAAAAAAAA1KiqNLrXrFmjf/zHf9QPf/hDNTQ06Mtf/rKee+45XXDBBTriiCOqEQIAAAAAAAAAoEZVpdH9+9//XmeffbYkqaGhQSMjI6qrq9OVV16p22+/vRohAAAAAAAAAABqVFUa3W1tbUqlUpKkhQsX6re//a0kae/evUqn/3/27j9OzrK+9/97cX/M7GZnsuxCMGyI2F04BZJAVSi65kCxUtraEnOotj5OUVt7TisPazl+C0kUijUkSKVU6wH1KGhPrXikqz60QlsqhKD1B9WTrYjNWgpZlqTuujv3ZGcmu0vm+4dnpwmz8+Oee665rmvu1/Px2MeDzD33fX2uz319rrlysbkn14oQAAAAAAAAAABtyuhG98qG9tatW/V3f/d3kqRrrrlGv//7v6+3ve1t+vVf/3VdccUVJkMAAAAAAAAAALS5TpMX37x5s17xilfo6quv1jXXXCNJ2rVrl7q6uvS1r31N27dv17vf/W6TIQAAAAAAAAAA2pzRje5HHnlE99xzj/bs2aPdu3dr+/bt+u3f/m3deOONJpsFAAAAAAAAAMSI0UeXvPrVr9YnPvEJPffcc/rQhz6kf/u3f9N//s//Weecc45uu+02HT582GTzAAAAAAAAAIAYaMmXUfb19ektb3mLHnnkEf3Lv/yLrrnmGn34wx/WWWedpV/5lV9pRQgAAAAAAAAAgDZl9NElqxkZGdHOnTu1ceNG7dixQ1/+8pdbHYLTpuZyyhaWFeSXlE52aU2iU8MDvbbDAuAo23OG7faBdkNNAW6jRgFgdbbnR9vtR+Fz7ECjTI37lm5079u3T5/4xCd0//3365RTTtGv/dqv6bd+67daGYLTnp5d0M7xCT02OVt6bWxkULu3bdLGwT6LkQFwke05w3b7QLuhpgC3UaMAsDrb86Pt9qPwOXagUSbHvfFHl0xPT+vWW2/VOeeco8suu0yTk5P64Ac/qOnpaX3sYx/Tz/7sz5oOwQtTc7mymyxJ+ydntWt8QlNzOUuRAXCR7TnDdvtAu6GmALdRowCwOtvzo+32o/A5dqBRpse90d/ovuqqq/T3f//3Ghoa0m/+5m/qrW99q84991yTTXorW1guu8kr9k/OKltYbnFEAFxme86w3T7QbqgpwG3UKACszvb8aLv9KHyOHWiU6XFvdKO7q6tLn/vc5/TLv/zLetGLXmSyKe8F+aWqx7OF6scBxIvtOcN2+0C7oaYAt1GjALA62/Oj7faj8Dl2oFGmx73Rje4vfvGLJi/fVlLJrqrH+xPVjwOIF9tzhu32gXZDTQFuo0YBYHW250fb7Ufhc+xAo0yPe+PP6EZ9+hOdGhsZXPXY2Mig+hMt/d5QAI6zPWfYbh9oN9QU4DZqFABWZ3t+tN1+FD7HDjTK9Lhno9sRwwO92r1tU9nNXvnW0eGBXkuRAXCR7TnDdvtAu6GmALdRowCwOtvzo+32o/A5dqBRpsd9R7FYLEa6gmeCIFA6nVYmk1EqlbIdTpmpuZyyhWVlC0vqT3SpP9HJ5IZYc71mbbM9Z9huH26ibhtHTcEGarZ+1ChcQM3CRbbnR9vtV1OrZl2OHTDF1Ljn30E4hskMQBi25wzb7QPthpoC3EaNAsDqbM+PttuPwufYgUaZGvc8ugQAAAAAAAAA4DU2ugEAAAAAAAAAXmOjGwAAAAAAAADgNTa6AQAAAAAAAABeY6MbAAAAAAAAAOA1NroBAAAAAAAAAF5joxsAAAAAAAAA4DU2ugEAAAAAAAAAXmOjGwAAAAAAAADgNTa6AQAAAAAAAABeY6MbAAAAAAAAAOA1NroBAAAAAAAAAF5joxsAAAAAAAAA4DU2ugEAAAAAAAAAXuu0HUBYe/bs0V//9V/rySefVDKZ1Ctf+UrddtttOvfcc22H1hRTczllC8sK8ktKJ7u0JtGp4YFe22EBwKqYsxA3jHkg3pgDAMBNPs/PPscONMrUuPduo/uRRx7R29/+dr3iFa/Q8vKydu7cqde+9rV64okn1NfXZzu8SJ6eXdDO8Qk9Njlbem1sZFC7t23SxkG/+wag/TBnIW4Y80C8MQcAgJt8np99jh1olMlx792jSx544AG9+c1v1vnnn68tW7bo3nvv1TPPPKPHH3/cdmiRTM3lym6yJO2fnNWu8QlNzeUsRQYA5ZizEDeMeSDemAMAwE0+z88+xw40yvS49+43ul8ok8lIkk499dRVjx87dkzHjh0r/TkIgpbEFVa2sFx2k1fsn5xVtrDc4ogAO3yp2bhjzsKJ4lC3jHm0kzjUbLMxB8AmahaozMX5ud6adTF2wDTT49673+g+0fHjx/XOd75Tr3rVq3TBBRes+p49e/YonU6XfjZs2NDiKOsT5JeqHs8Wqh8H2oUvNRt3zFk4URzqljGPdhKHmm025gDYRM0Clbk4P9dbsy7GDphmetx7vdH99re/Xf/8z/+sz3zmMxXfs2PHDmUymdLPoUOHWhhh/VLJrqrH+xPVjwPtwpeajTvmLJwoDnXLmEc7iUPNNhtzAGyiZoHKXJyf661ZF2MHTDM97r19dMl1112nL33pS9q3b5+Gh4crvq+np0c9PT0tjKwx/YlOjY0Mav8qv74/NjKo/oS3twoIxZeajTvmLJwoDnXLmEc7iUPNNhtzAGyiZoHKXJyf661ZF2MHTDM97r37je5isajrrrtO4+Pj+od/+AedffbZtkNqiuGBXu3etkljI4Mnvb7yraPDA72WIgOAcsxZiBvGPBBvzAEA4Caf52efYwcaZXrcdxSLxWKkK7TY7/3e7+nTn/60vvCFL+jcc88tvZ5Op5VMJmueHwSB0um0MpmMUqmUyVAbMjWXU7awrGxhSf2JLvUnOpncEGuu12zcMWdhNe1ct4x5tKN2rtlmYw6AC6hZoJzL83OtmnU5dsAUU+Peu38Hcdddd0mSLrvsspNev+eee/TmN7+59QE1GZMZAJ8wZyFuGPNAvDEHAICbfJ6ffY4daJSpce/dRrdnv4AOAAAAAAAAADDMu2d0AwAAAAAAAABwIja6AQAAAAAAAABeY6MbAAAAAAAAAOA1NroBAAAAAAAAAF5joxsAAAAAAAAA4DU2ugEAAAAAAAAAXmOjGwAAAAAAAADgNTa6AQAAAAAAAABeY6MbAAAAAAAAAOA1NroBAAAAAAAAAF5joxsAAAAAAAAA4DU2ugEAAAAAAAAAXmOjGwAAAAAAAADgNTa6AQAAAAAAAABe67QdAE42NZdTtrCsIL+kdLJLaxKdGh7otR0WAKyKOQsuYlwCMIX5BQDc5PP87HPsgGvY6HbI07ML2jk+occmZ0uvjY0Mave2Tdo42GcxMgAox5wFFzEuAZjC/AIAbvJ5fvY5dsBFPLrEEVNzubLJTZL2T85q1/iEpuZyliIDgHLMWXAR4xKAKcwvAOAmn+dnn2MHXMVGtyOyheWyyW3F/slZZQvLLY4IACpjzoKLGJcATGF+AQA3+Tw/+xw74Co2uh0R5JeqHs8Wqh8HgFZizoKLGJcATGF+AQA3+Tw/+xw74Co2uh2RSnZVPd6fqH4cAFqJOQsuYlwCMIX5BQDc5PP87HPsgKvY6HZEf6JTYyODqx4bGxlUf4LvDQXgDuYsuIhxCcAU5hcAcJPP87PPsQOuYqPbEcMDvdq9bVPZJLfybbvDA72WIgOAcsxZcBHjEoApzC8A4Caf52efYwdc1VEsFou2g2ilIAiUTqeVyWSUSqVsh1Nmai6nbGFZ2cKS+hNd6k90Mrkh1lyv2bhjzsJqbNct4xIIx3bN+oT5BS6gZoFyLs/PtWrW5dgB3/DvIBzDZAbAJ8xZcBHjEoApzC8A4Caf52efYwdcw6NLAAAAAAAAAABeY6MbAAAAAAAAAOA1NroBAAAAAAAAAF5joxsAAAAAAAAA4DU2ugEAAAAAAAAAXmOjGwAAAAAAAADgNTa6AQAAAAAAAABeY6MbAAAAAAAAAOA1NroBAAAAAAAAAF5joxsAAAAAAAAA4DU2ugEAAAAAAAAAXmOjGwAAAAAAAADgNTa6AQAAAAAAAABeY6MbAAAAAAAAAOA1NroBAAAAAAAAAF7rtB1Aoz784Q/r9ttv1+HDh7VlyxZ96EMf0sUXX2w7LEnS1FxO2cKygvyS0skurUl0anig1/i5ANBqNucs5kt/ce8AuCTMnMT81Rjf8vbsXE7BCfH2Jzp1psPxuibO60Pb7ds0PZ9XJr9U6nsq2aX1a5Mta9/n3PscO9AoU+Pey43u++67T9dff73uvvtuXXLJJbrzzjt15ZVX6gc/+IFOP/10q7E9PbugneMTemxytvTa2Migdm/bpI2DfcbOBYBWszlnMV/6i3sHwCVh5iTmr8b4ljff4nVNnNeHttu3yXbfbbcfhc+xA40yOe69fHTJHXfcobe97W16y1veovPOO0933323ent79YlPfMJqXFNzubIbJUn7J2e1a3xCU3M5I+cCQKvZnLOYL/3FvQPgkjBzEvNXY3zL27M14n3WsXhdE+f1oe32bZqez1ft+/R83mj7Pufe59iBRpke9979Rvfi4qIef/xx7dixo/TaKaecote85jX6+te/Xvb+Y8eO6dixY6U/B0FgLLZsYbnsRq3YPzmrbGHZyLlAO2llzaJxNucs5kv31Fu33DvADXzW/kSYOYn5qzG+5S2oEW9QWNaZLY5J8qdm47w+tN2+TZn8UtW+Z/JLRh9h4mLuWRsDlZke9979RvfMzIyef/55rVu37qTX161bp8OHD5e9f8+ePUqn06WfDRs2GIstyC9VPZ4tVD4e5VygnbSyZtE4m3MW86V76q1b7h3gBj5rfyLMnMT81Rjf8uZqvL7UbJzXh7bbt8l23223vxrWxkBlpse9dxvdYe3YsUOZTKb0c+jQIWNtpZJdVY/3Jyofj3Iu0E5aWbNonM05i/nSPfXWLfcOcAOftT8RZk5i/mqMb3lzNV5fajbO60Pb7dtku++2218Na2OgMtPj3ruN7qGhIb3oRS/SkSNHTnr9yJEjOuOMM8re39PTo1QqddKPKf2JTo2NDK56bGxkUP2Jyk+KiXIu0E5aWbNonM05i/nSPfXWLfcOcAOftT8RZk5i/mqMb3lL1Yg3ZSleX2o2zutD2+3blE52Ve17usamVlQu5p61MVCZ6XHv3UZ3d3e3Xvayl+mhhx4qvXb8+HE99NBDuvTSSy1GJg0P9Gr3tk1lN2zlm0OHB3qNnAsArWZzzmK+9Bf3DoBLwsxJzF+N8S1vZ9aI90zH4nVNnNeHttu3af3aZNW+m3w+t+R37n2OHWiU6XHfUSwWi5GuYMF9992na6+9Vh/5yEd08cUX684779RnP/tZPfnkk2XP7n6hIAiUTqeVyWSM/Z/wqbmcsoVlZQtL6k90qT/RWfeNinIu0I5aUbNonM05i/nSXbXqlnsHuCXun7Vh5iTmr8b4lrdn53IKTog3leh0apPb9ZqN8/rQdvs2Tc/nlckvlfqeTnYZ3+Q+kcu5Z20MlDM17r38dxBveMMb9KMf/Ug33XSTDh8+rAsvvFAPPPBAzU3uVolyY5jMAPjE5pzFfOkv7h0Al4SZk5i/GuNb3s4c6NWZtoPwWJzXh7bbt2n92mRLN7ZfyOfc+xw70ChT497LjW5Juu6663TdddfZDgMAAAAAAAAAYJl3z+gGAAAAAAAAAOBEbHQDAAAAAAAAALzm7aNLGrXy3ZtBEFiOBPBbf3+/Ojo6jLdDzQLN0aqalahboBmoWcAv1CzgF2oW8Eu9NRu7je5sNitJ2rBhg+VIAL+16lveqVmgOVpVsxJ1CzQDNQv4hZoF/ELNAn6pt2Y7iiv/aykmjh8/runp6Zr/JyAIAm3YsEGHDh1q2eTXLshdY3zLW6v+Dzg1Wxt9p+/19L2Vv7VST93G6d7R1/Zkuq/UbGu1c//auW+SO/2jZt1B3+PZdylc/6lZrCD39pio2dj9Rvcpp5yi4eHhut+fSqUY6A0id40hbyejZutH3+m7K8LUrYvxm0Jf21M79JWa/Q/t3L927pvU/v07ETVbH/oez75L7vWfmvUDubenmbnnyygBAAAAAAAAAF5joxsAAAAAAAAA4DU2uivo6enRzTffrJ6eHtuheIfcNYa8RRPn/NF3+u4j3+MPg762pzj1VWr//rZz/9q5b1L7969Rcc4LfY9n3yW/++9z7L4j9/aYyH3svowSAAAAAAAAANBe+I1uAAAAAAAAAIDX2OgGAAAAAAAAAHiNjW4AAAAAAAAAgNfY6AYAAAAAAAAAeI2NbgAAAAAAAACA19joBgAAAAAAAAB4jY1uAAAAAAAAAIDX2OgGAAAAAAAAAHiNjW4AAAAAAAAAgNfY6AYAAAAAAAAAeI2NbgAAAAAAAACA19joBgAAAAAAAAB4jY1uAAAAAAAAAIDXYrfRXSwWFQSBisWi7VAA1IGaBfxD3QJ+oWYBv1CzgF+oWaB1YrfRnc1mlU6nlc1mbYcCoA7ULOAf6hbwCzUL+IWaBfxCzQKtE7uNbgAAAAAAAABAe2GjGwAAAAAAAADgNTa6AQAAAAAAAABeY6MbAAAAAAAAAOC1TtsBtKOpuZyyhWUF+SWlk11ak+jU8ECv7bDq4nPsQBw9O5dTcELN9ic6dWYLa9bmnMF85S/b4zbOTNbN9HxemfxS6dqpZJfWr0025dqtYHJcMl8BfqFmo4nz+tB2+zbZ7rvP6xDbuQNsMDXu2ehusqdnF7RzfEKPTc6WXhsbGdTubZu0cbDPYmS1+Rw7EEe2a9Zm+7b7jsZx7+wxmXvf7yu5AbCCmo0mzutD2+3bZLvvttuPwufYgUaZHPc8uqSJpuZyZTdKkvZPzmrX+ISm5nKWIqvN59iBOHq2Rs0+a7hmbc4ZzFf+sj1u48xk3UzP56tee3o+3/C1W8HkuGS+AvxCzUYT5/Wh7fZtst13n9chtnMH2GB63LPR3UTZwnLZjVqxf3JW2cJyiyOqn8+xA3EU1KjZwHDN2pwzmK/8ZXvcxpnJusnkl6peO5NfavjarWByXDJfAX6hZqOJ8/rQdvs22e67z+sQ27kDbDA97tnobqKgxgSaLbg7wfocOxBHtmvWZvu2+47Gce/sMZl73+8ruQGwgpqNJs7rQ9vt22S777bbj8Ln2IFGmR73bHQ3USrZVfV4f6L6cZt8jh2II9s1a7N9231H47h39pjMve/3ldwAWEHNRhPn9aHt9m2y3Xfb7Ufhc+xAo0yPeza6m6g/0amxkcFVj42NDKo/4e53f/ocOxBHqRo1mzJcszbnDOYrf9ket3Fmsm7Sya6q107XWMzaZnJcMl8BfqFmo4nz+tB2+zbZ7rvP6xDbuQNsMD3u2ehuouGBXu3etqnshq18c+jwQK+lyGrzOXYgjs6sUbNnGq5Zm3MG85W/bI/bODNZN+vXJqtee/3aZMPXbgWT45L5CvALNRtNnNeHttu3yXbffV6H2M4dYIPpcd9RLBaLka7gmSAIlE6nlclklEqljLQxNZdTtrCsbGFJ/Yku9Sc6vZmgfI4d7akVNeuzZ+dyCk6o2VSis6WbhTbnDOYrd9WqW9vjNs5M1s30fF6Z/FLp2ulkl9N/uXwhk+PS9fmKz1rgZNRsNHFeH9pu3ybbfXd5HVKrZm3nDrDB1LhnoxuA06hZwD/ULeAXahbwCzUL+IWaBVqHR5cAAAAAAAAAALzGRjcAAAAAAAAAwGt8hatjVp5RE+SXlE52aQ3PZgLgsJVn4a3MWakWPgvPZtsAEAbrO8A+6hAwixprHLkDmoeNboc8PbugneMTemxytvTayreObhzssxgZAJSzOWcxXwLwBfMVYB91CJhFjTWO3AHNxaNLHDE1lyub3CRp/+Ssdo1PaGouZykyACg3PZ+vOmdNz+fbsm0ACIP1HWAfdQiYRY01jtwBzcdGtyOyheWyyW3F/slZZQvLLY4IACrL5JeqzlmZ/FJbtg0AYbC+A+yjDgGzqLHGkTug+djodkRQY2MmW2DjBoA7bM5ZzJcAfMF8BdhHHQJmUWONI3dA87HR7YhUsqvq8f5E9eMA0Eo25yzmSwC+YL4C7KMOAbOoscaRO6D52Oh2RH+iU2Mjg6seGxsZVH+C7w0F4I50sqvqnJWusWjztW0ACIP1HWAfdQiYRY01jtwBzcdGtyOGB3q1e9umsklu5dt2hwd6LUUGAOXWr01WnbPWr022ZdsAEAbrO8A+6hAwixprHLkDmq+jWCwWbQfRSkEQKJ1OK5PJKJVK2Q6nzNRcTtnCsrKFJfUnutSf6GRyQ6y5XrNxNz2fVya/VJqz0smulm0022wb1VG3wMlcX99Rs4gD1+swDGoWLmqnGmu2WjVL7oDm4d9BOIbJDIBP1q9NWttcttk2AITB+g6wjzoEzKLGGkfugObh0SUAAAAAAAAAAK+x0Q0AAAAAAAAA8JpTjy7Zt2+fbr/9dj3++ON67rnnND4+rquvvrp0/M1vfrM++clPnnTOlVdeqQceeKDFkaKSlWdLBfklpZNdWsOzpYC2ZrPmmW+A8EzWDTUJoNWYd9xk876sfIfLStupFn+HC323V4+Z3KJmji4qKCwplezSUF+30r3dLWs/Ctu5A2wwNe6d2uheWFjQli1b9Na3vlWvf/3rV33PL/zCL+iee+4p/bmnp6dV4aGGp2cXtHN8Qo9NzpZeW/m24I2DfRYjA2CCzZpnvgHCM1k31CSAVmPecVOc14f03V770/N53XD/AT16cKb02tbRIe3dvtn57/SxnTvABpPj3qlHl1x11VV63/vep23btlV8T09Pj84444zSz8DAQAsjRCVTc7myQSpJ+ydntWt8QlNzOUuRATDBZs0z3wDhmawbahJAqzHvuMnmfZmez1dte3o+b6xtib7brMdMbrFsk1uS9h2c0Y33H1Amt2i0/Shs5w6wwfS4d+o3uuvx8MMP6/TTT9fAwIB+7ud+Tu973/s0ODhY8f3Hjh3TsWPHSn8OgqAVYcZOtrBcNkhX7J+cVbaw3OKI4Ctq1g82a575xj3UrftM1g016R9qFr6L27zjS83avC+Z/FLVtjP5JaO/2Uvf7dXjzNHFsk3uFfsOzmjm6GLLH2FSb83azh1gg+lx79RvdNfyC7/wC/rUpz6lhx56SLfddpseeeQRXXXVVXr++ecrnrNnzx6l0+nSz4YNG1oYcXwE+aWqx7OF6seBFdSsH2zWPPONe6hb95msG2rSP9QsfBe3eceXmo3z+pC+W2y/xvVtzAf11qzt3AE2mB73Xm10v/GNb9Sv/MqvaNOmTbr66qv1pS99Sd/61rf08MMPVzxnx44dymQypZ9Dhw61LuAYSSW7qh7vT1Q/DqygZv1gs+aZb9xD3brPZN1Qk/6hZuG7uM07vtRsnNeH9N1i+zWub2M+qLdmbecOsMH0uPdqo/uFXvrSl2poaEiTk5MV39PT06NUKnXSD5qvP9GpsZHVHyEzNjKo/oR3T8mBJdSsH2zWPPONe6hb95msG2rSP9QsfBe3eceXmrV5X9LJrqptp2tsrERF3+3V49Cabm0dHVr12NbRIQ2tae1jS6T6a9Z27gAbTI97rze6p6amNDs7qxe/+MW2Q4m94YFe7d62qWywrnxr6vBAr6XIAJhgs+aZb4DwTNYNNQmg1Zh33GTzvqxfm6zatslnVEv03WY9pnu7tXf75rLN7q2jQ7pt++aWP587DNu5A2wwPe47isViMdIVmujo0aOl386+6KKLdMcdd+jyyy/XqaeeqlNPPVW33HKLtm/frjPOOEM//OEP9Yd/+IfKZrOamJhQT09PXW0EQaB0Oq1MJuPs/wn32dRcTtnCsrKFJfUnutSf6GRyRiTUrNts1jzzjbuoW3eZrBtq0l/ULHwV13nH9Zq1eV+m5/PK5JdKbaeTXcY3ek9E3+3VYya3qJmji6X2h9Z0O7PJXatmbecOsMHUuHdqo/vhhx/W5ZdfXvb6tddeq7vuuktXX321vvOd72h+fl7r16/Xa1/7Wv3xH/+x1q1bV3cbri8KAJyMmgX8Q90CfqFmAb9Qs4BfqFmgdZx64M9ll12mavvuDz74YAujAQAAAAAAAAD4wKmNbles/JOXoLCkVLJLQ33u/JMXAMBPMFcD4VE3AFzHPIUoGD/wEeMWaB42ul9gej6vG+4/oEcPzpRe2zo6pL3bN7f0+VYAgMqYq4HwqBsArmOeQhSMH/iIcQs01ym2A3BJJrdYNsFI0r6DM7rx/gPK5BYtRQYAWMFcDYRH3QBwHfMUomD8wEeMW6D52Og+wczRxbIJZsW+gzOaOcokAwC2MVcD4VE3AFzHPIUoGD/wEeMWaD42uk8QFJaqHs/WOA4AMI+5GgiPugHgOuYpRMH4gY8Yt0DzsdF9glSiq+rx/hrHAQDmMVcD4VE3AFzHPIUoGD/wEeMWaD42uk8wtKZbW0eHVj22dXRIQ2v41lsAsI25GgiPugHgOuYpRMH4gY8Yt0DzsdF9gnRvt/Zu31w20WwdHdJt2zcr3cskAwC2MVcD4VE3AFzHPIUoGD/wEeMWaL6OYrFYtB1EKwVBoHQ6rUwmo1Qqtep7MrlFzRxdVLawpP5El4bWdDPBAJbUU7OIJ+Zqd1G37qJusBpqFi5hnqqNmq2M8QMX1apZxi3QPJ22A3BRupdJBQBcx1wNhEfdAHAd8xSiYPzAR4xboHl4dAkAAAAAAAAAwGtsdAMAAAAAAAAAvMajSwyYmsspW1hWkF9SOtmlNYlODQ/0Gj+3GWy37zOf77vvjgQFzS0sKigsK5Xs1EBvt9alErbDagnbY8dm+7b7bpPvffc9fp+ZzL3v95XcAOZQA61lO99xXh/S9/i2H4XPsQONMjXu2ehusqdnF7RzfEKPTc6WXhsbGdTubZu0cbDP2LnNYLt9n/l83333zOyCdqySv1u3bdJZbZ4/22PHZvu2+26T7333PX6fmcy97/eV3ADmUAOtZTvfcV4f0vf4th+Fz7EDjTI57nl0SRNNzeXKbpQk7Z+c1a7xCU3N5Yyc2wy22/eZz/fdd0eCQtkmt/ST/O0cn9CRoGApMvNsjx2b7dvuu02+9933+H1mMve+31dyA5hDDbSW7XzHeX1I3+PbfhQ+xw40yvS4Z6O7ibKF5bIbtWL/5KyyhWUj5zaD7fZ95vN9993cwmLV/M0tLLY4otaxPXZstm+77zb53nff4/eZydz7fl/JDWAONdBatvMd5/UhfY9v+1H4HDvQKNPjno3uJgryS1WPZwuVj0c5txlst+8zn++774IaE2Ct4z6zPXZstm+77zb53nff4/eZydz7fl/JDWAONdBatvMd5/UhfY9v+1H4HDvQKNPjno3uJkolu6oe709UPh7l3Gaw3b7PfL7vvkslqn/NQK3jPrM9dmy2b7vvNvned9/j95nJ3Pt+X8kNYA410Fq28x3n9SF9j2/7UfgcO9Ao0+Oeje4m6k90amxkcNVjYyOD6q+y6Rbl3Gaw3b7PfL7vvhvo666av4G+7hZH1Dq2x47N9m333Sbf++57/D4zmXvf7yu5AcyhBlrLdr7jvD6k7/FtPwqfYwcaZXrcs9HdRMMDvdq9bVPZDVv55tDhgV4j5zaD7fZ95vN99926VEK3Vsjfrds2aV0qYSky82yPHZvt2+67Tb733ff4fWYy977fV3IDmEMNtJbtfMd5fUjf49t+FD7HDjTK9LjvKBaLxUhX8EwQBEqn08pkMkqlUkbamJrLKVtYVrawpP5El/oTnXXfqCjnNoPt9n3m8313WT01eyQoaG5hUUFhWalEpwb6utt6k/tEtseOzfZt990m1/teq25dj7+dmcy97/c1zrlpxfoY8eZ6DfjG9c/ZOK8P6Xt826/G9ZoFbDA17tnoBuA0ahbwD3UL+IWaBfxCzQJ+oWaB1uHRJQAAAAAAAAAAr/FkewNWfv0+yC8pnezSGgv/XMlG23FH7u2Jc+7pezz7DjSKuqnMZG7IO9oR4xooF+e6sN132+1H4XPsQKNMjXs2upvs6dkF7Ryf0GOTs6XXVh6ovnGwr23bjjtyb0+cc0/f49l3oFHUTWUmc0Pe0Y4Y10C5ONeF7b7bbj8Kn2MHGmVy3PPokiaamsuV3ShJ2j85q13jE5qay7Vl23FH7u2Jc+7pezz7DjSKuqnMZG7IO9oR4xooF+e6sN132+1H4XPsQKNMj3s2upsoW1guu1Er9k/OKltYbsu2447c2xPn3NP3ePYdaBR1U5nJ3JB3tCPGNVAuznVhu++224/C59iBRpke92x0N1GQX6p6PFuoftzXtuOO3NsT59zT98raue9Ao6ibykzmhryjHTGugXJxrgvbfbfdfhQ+xw40yvS4Z6O7iVLJrqrH+xPVj/vadtyRe3vinHv6Xlk79x1oFHVTmcnckHe0I8Y1UC7OdWG777bbj8Ln2IFGmR73bHQ3UX+iU2Mjg6seGxsZVH/C3Hd/2mw77si9PXHOPX2PZ9+BRlE3lZnMDXlHO2JcA+XiXBe2+267/Sh8jh1olOlxz0Z3Ew0P9Gr3tk1lN2zlm0OHB3rbsu24I/f2xDn39D2efQcaRd1UZjI35B3tiHENlItzXdjuu+32o/A5dqBRpsd9R7FYLEa6gmeCIFA6nVYmk1EqlTLSxtRcTtnCsrKFJfUnutSf6GzZBGWz7bgj92bUU7Nxzj19j2ffXdeKz1o0hrqpzGRuXM87NYtGuD6u2xk1664414Xtvttuv5paNety7IAppsY9/w7CAJsTEpOhPeTenjjnnr4DCIO6qcz0v7wD2g3jGigX57qw3Xfb7Ufhc+xAo0yNex5dAgAAAAAAAADwGhvdAAAAAAAAAACv8egSnGTlGTlBfknpZJfW8GwoAFXYnDOYr4DwqBs7yDt8wVhFM8R5fWi7ffiJcQM0DxvdKHl6dkE7xyf02ORs6bWVbz3dONhnMTIALrI5ZzBfAeFRN3aQd/iCsYpmiPP60Hb78BPjBmguHl0CST/5P4gvnFwlaf/krHaNT2hqLmcpMgAusjlnMF8B4VE3dpB3+IKximaI8/rQdvvwE+MGaD42uiFJyhaWyybXFfsnZ5UtLLc4IgAuszlnMF8B4VE3dpB3+IKximaI8/rQdvvwE+MGaD42uiFJCvJLVY9nC9WPA4gXm3MG8xUQHnVjB3mHLxiraIY4rw9ttw8/MW6A5mOjG5KkVLKr6vH+RPXjAOLF5pzBfAWER93YQd7hC8YqmiHO60Pb7cNPjBug+djohiSpP9GpsZHBVY+NjQyqP8H3lgL4DzbnDOYrIDzqxg7yDl8wVtEMcV4f2m4ffmLcAM3HRjckScMDvdq9bVPZJLvybb/DA72WIgPgIptzBvMVEB51Ywd5hy8Yq2iGOK8PbbcPPzFugObrKBaLRdtBtFIQBEqn08pkMkqlUrbDcc7UXE7ZwrKyhSX1J7rUn+hkcoVV1KzbbM4ZzFfuom7dRd3Y4XreqVmscH2s4idcr9k4rw9ttw831apZxg3QPPw7CJyEyRRAGDbnDOYrIDzqxg7yDl8wVtEMcV4f2m4ffmLcAM3Do0sAAAAAAAAAAF5joxsAAAAAAAAA4DWnHl2yb98+3X777Xr88cf13HPPaXx8XFdffXXpeLFY1M0336yPfexjmp+f16te9SrdddddGh0dtRd0kz07l1NQWFaQX1I6+ZNnM53JP2PxwspztVbu3ZoQz9Wans8rk18qnZtKdmn92qThiIHoMrlFzRxdVFBYUirZpaG+bqV7u1vSdpSaA+KKurGDvMMWxh7ixvaYZ21sj89/p477vQOayamN7oWFBW3ZskVvfetb9frXv77s+Pvf/3598IMf1Cc/+UmdffbZes973qMrr7xSTzzxhBKJhIWIm+vp2QXtHJ/QY5OzpddWvm1342CfxchQS5R7x32Hr6bn87rh/gN69OBM6bWto0Pau32z8UUldQOER93YQd5hC2MPcWN7zLM2tsfn/vscO+Aipx5dctVVV+l973uftm3bVnasWCzqzjvv1Lvf/W796q/+qjZv3qxPfepTmp6e1uc///nWB9tkz87lyiY3Sdo/Oatd4xN6di5nKTLUMlXj3k1VuXfT8/mq507P543EDESVyS2WLeQlad/BGd14/wFlcovG2o5Sc0BcUTd2kHfYwthD3Nge86yN7fH579Rxv3eACU79Rnc1Tz31lA4fPqzXvOY1pdfS6bQuueQSff3rX9cb3/jGVc87duyYjh07VvpzEATGY21EUFgum9xW7J+cVVBY1pktjgn1yda4d9nCcsVzM/mlqudm8kve/HOrZvGlZuNu5uhi2UJ+xb6DM5o5umjsn2lGqTmYQd26j7qxw9W8U7Ptz9Wxh8ZQs7XZHvOsje1x8e/U9dZs3O8dYEJTfqN7YWFB73nPe/TKV75SIyMjeulLX3rSTzMcPnxYkrRu3bqTXl+3bl3p2Gr27NmjdDpd+tmwYUNT4mm2IL9U9Xi2UP047Ily77jv5Xyp2bgLaoxNk2OXunEPdes+6sYOV/NOzbY/V8ceGkPN1mZ7zLM2tsfF/tdbsy7GDviuKb/R/du//dt65JFH9F//63/Vi1/8YnV0dDTjsk2xY8cOXX/99aU/B0Hg5MIgleyqerw/Uf047Ily77jv5Xyp2bhL1RibJscudeMe6tZ91I0druadmm1/ro49NIaarc32mGdtbI+L/a+3Zl2MHfBdUza6v/KVr+jLX/6yXvWqVzXjcqs644wzJElHjhzRi1/84tLrR44c0YUXXljxvJ6eHvX09BiLq1lSiU6NjQxq/yr/bGVsZFCphDdPmYmd/hr3rr/KvUsnu6qem67xwdeOfKnZuBta062to0Pat8o/0dw6OqShNea+XT5KzcEM6tZ91I0druadmm1/ro49NIaarc32mGdtbI+Lf6eut2bjfu8AE5ry6JKBgQGdeuqpzbhURWeffbbOOOMMPfTQQ6XXgiDQN77xDV166aVG226FMwd6tXvbJo2NDJ70+sq37Z450GspMtQyXOPeDVe5d+vXJqueG7fnc8Mf6d5u7d2+WVtHh056fevokG7bvtnYMwilaDUHxBV1Ywd5hy2MPcSN7THP2tgen/9OHfd7B5jQUSwWi1Ev8r//9//WF77wBX3yk59Ub2/jhXj06FFNTk5Kki666CLdcccduvzyy3XqqafqrLPO0m233aa9e/fqk5/8pM4++2y95z3v0YEDB/TEE08okUjU1UYQBEqn08pkMkqlUg3HasqzczkFhWVlC0vqT3Qplehkk9sTU3M5ZU+4d/2Jzro/mKbn88rkl0rnppNdTn8gt5LrNRt3mdyiZo4ulsbu0Jpuowv5E0WpOZhF3bqLurHD9bxTs+3L9bGHxlCzldke86yN7XH579S1ajbu9w5opqZsdF900UX64Q9/qGKxqJe85CXq6jr5n4b80z/9U13Xefjhh3X55ZeXvX7ttdfq3nvvVbFY1M0336yPfvSjmp+f19jYmP7n//yfOuecc+qOlUUB4BdqFvAPdQv4hZoF/ELNAn6hZoHWacoDf66++upmXEaXXXaZqu27d3R06L3vfa/e+973NqU9AAAAAAAAAID/mrLRffPNNzfjMoDXVv65UZBfUjrZpTUh/rlRlHMBm1b+ieDK2E218J8IUjdAeNSNHTbnSrQf6hiozHZ9rDy6JCgsKZXs0lBf6x5dYvuzxmbfJfv3PgqfYwdcw1e4Ak3w9OyCdo5P6LETvi155QskNg72GTsXsMnm2KVugPCoGzvIO5qJ8QRUZrs+pufzuuH+A3r04Ezpta2jQ9q7fbPxDec4912y3/8ofI4dcNEpjZ546qmnambmJ5PYwMCATj311Io/QDubmsuVfTBJ0v7JWe0an9DUXM7IuYBN0/P5qmN3ej5vrG3qBgiPurHD5lyJ9kMdA5XZro9MbrFso1eS9h2c0Y33H1Amt2isbdufNTb7Ltm/91H4HDvgqoZ/o/tP//RP1d/fL0m68847mxUP4J1sYbnsg2nF/slZZQvLRs4FbMrkl6qO3Ux+ydhvb1A3QHjUjR0250q0H+oYqMx2fcwcXSzb6F2x7+CMZo4uGnuMh+3PGpt9l+zf+yh8jh1wVcMb3ddee+2q/w3ETZBfqno8W6h8PMq5gE02xy51A4RH3dhB3tFMjCegMtv1EdS4fjuvjW32XbLf/yh8jh1wVVOe0R0Ewaqvd3R0qKenR93drfsCAqDVUsmuqsf7E5WPRzkXsMnm2KVugPCoGzvIO5qJ8QRUZrs+UjWu385rY5t9l+z3PwqfYwdc1fAzuk+0du1aDQwMlP2sXbtWyWRSGzdu1M0336zjx483oznAKf2JTo2NDK56bGxkUP2Jyv8/Kcq5gE3pZFfVsZuusWiLgroBwqNu7LA5V6L9UMdAZbbrY2hNt7aODq16bOvokIbWmPvlP9ufNTb7Ltm/91H4HDvgqqZsdN97771av369du7cqc9//vP6/Oc/r507d+rMM8/UXXfdpd/5nd/RBz/4Qe3du7cZzQFOGR7o1e5tm8o+oFa+KXl4oNfIuYBN69cmq45dk88BpG6A8KgbO2zOlWg/1DFQme36SPd2a+/2zWUbvltHh3Tb9s1Gn1Ft+7PGZt8l+/c+Cp9jB1zVUSwWi1EvcsUVV+i//bf/pl/7tV876fXPfvaz+shHPqKHHnpIf/EXf6Hdu3frySefjNpcJEEQKJ1OK5PJKJVKWY0F7WVqLqdsYVnZwpL6E13qT3TW/cEU5dx2R826bXo+r0x+qTR208mulm3cUDfuom7dRd3YYXOurAc16xfqGNRsZbbrI5Nb1MzRxVL7Q2u6jW/0rrD9WWOz75L9e19NrZp1OXbAN03Z6E4mkzpw4IBGR0dPev3gwYPasmWLcrmcnnrqKZ1//vnK5XJRm4uERQHgF2oW8A91C/iFmgX8Qs0CfqFmgdZpyqNLNmzYoI9//ONlr3/84x/Xhg0bJEmzs7MaGBhoRnMAAAAAAAAAAJQ05cn2f/Inf6JrrrlGX/nKV/SKV7xCkvTtb39bTz75pD73uc9Jkr71rW/pDW94QzOaAwAAAAAAAACgpCkb3b/yK7+iJ598Uh/96Ef1gx/8QJJ01VVX6fOf/7xe8pKXSJJ+93d/txlNtcTK85GC/JLSyS6taeHzkaK2bfv8KGy2LUlHgoLmFhYVFJaVSnZqoLdb61KJus+3HX8UPscu/cfz6FbiTzn27FOTbN+7OM8ZNsW574jG5NiJ+jlqm8ncULOohTGCdhLn9SF9j2/7UfgcO9AoU+O+KRvdknT22Wdrz549zbqcNU/PLmjn+IQem5wtvbbyjbcbB/ucbtv2+VHYbFuSnpld0I5V2r912yad5XjuovI5dsn/+KOw3fc4zxk2xbnviMbk2In6OWqbydxQs6iFMYJ2Euf1IX2Pb/tR+Bw70CiT477hZ3QfOHBAx48fL/13tR9fTM3lyhItSfsnZ7VrfEJTc+a+SDNq27bPj8Jm29JPfgPthX85X2l/5/iEjgSFqufbjj8Kn2OXfvKb3NXin57PW4rMPNv3Ls5zhk1x7juiMTl2on6O2mYyN9QsamGMoJ3EeX1I3+PbfhQ+xw40yvS4b/g3ui+88EIdPnxYp59+ui688EJ1dHSoWCyWva+jo0PPP/98pCBbJVtYLkv0iv2Ts8oWlp1t2/b5UdhsW5LmFhartj+3sFj1n17bjj8Kn2OXpEx+qWr8mfxS2z7CxPa9i/OcYVOc+45oTI6dqJ+jtpnMDTWLWhgjaCdxXh/S9/i2H4XPsQONMj3uG97ofuqpp3TaaaeV/rsdBPmlqsezherHbbZt+/wobLYtSUGNIqp53HL8Ufgcu+R//FHY7nuc5wyb4tx3RGNy7ET9HLXNaG6oWdTAGEE7ifP6kL7Ht/0ofI4daJTpcd/wRvfGjRslSUtLS7rlllv0nve8R2effXakYGxLJbuqHu9PVD9us23b50dhs21JSiWql0HN45bjj8Ln2CX/44/Cdt/jPGfYFOe+IxqTYyfq56htRnNDzaIGxgjaSZzXh/Q9vu1H4XPsQKNMj/uGn9G9oqurS/fff3/UyzihP9GpsZHBVY+NjQyq3+Bf1KK2bfv8KGy2LUkDfd1V2x/o6656vu34o/A5dklKJ7uqxp+uMYH6zPa9i/OcYVOc+45oTI6dqJ+jtpnMDTWLWhgjaCdxXh/S9/i2H4XPsQONMj3uI290S9LVV1+tz3/+8824lFXDA73avW1TWcJXvvlzeKDX2bZtnx+FzbYlaV0qoVsrtH/rtk01nytqO/4ofI5dktavTVaNv12fzy3Zv3dxnjNsinPfEY3JsRP1c9Q2k7mhZlELYwTtJM7rQ/oe3/aj8Dl2oFGmx31HcbVvkAzpfe97nz7wgQ/o537u5/Tyl79cfX19Jx1/xzveEbWJpgmCQOl0WplMRqlUatX3TM3llC0sK1tYUn+iS/2JzpZNMFHbtn1+FDbblqQjQUFzC4sKCstKJTo10Ncd6i/ntuOPwuXY66nZ6fm8MvmlUvzpZFdbb3KfyPa9i/OcYZPrfa+nbmGHybET9XPUNpO5oWZRi+tjBG5xvWbjvD6k7/Ftv5paNety7IAppsZ9Uza6qz2bu6OjQ//6r/8atYmmcX1RAOBk1CzgH+oW8As1C/iFmgX8Qs0CrdOUB/489dRTkqSZmRlJ0tDQUDMuCwAAAAAAAABATZE3uufn57Vr1y7dd999mpubkyQNDAzojW98o3bv3q10Oh05SPhj5Z8eBPklpZNdWsM/uQFgCPMNEB51A7QO9Qa03sojDVfqLhWjRxrGue++4/MCaJ5IG90//vGPdemll+rZZ5/Vm970Jv30T/+0JOmJJ57Qvffeq4ceekhf+9rXNDAw0JRg4banZxe0c3xCj03Oll5beZj8xsG+KmcCQDjMN0B41A3QOtQb0Hpxrrs499133DuguU6JcvJ73/tedXd364c//KE+8pGP6J3vfKfe+c536qMf/agmJyfV1dWl9773vc2KFQ6bmsuVTc6StH9yVrvGJzQ1l7MUGYB2w3wDhEfdAK1DvQGtNz2fr1p30/N5S5GZF+e++47PC6D5Im10f/7zn9ef/MmfaN26dWXHzjjjDL3//e/X+Ph4lCbgiWxhuWxyXrF/clbZwnKLIwLQrphvgPCoG6B1qDeg9TL5pap1l8kvtTii1olz333H5wXQfJE2up977jmdf/75FY9fcMEFOnz4cJQm4ImgxodntsCHK4DmYL4BwqNugNah3oDWi3PdxbnvvuPeAc0XaaN7aGhI//Zv/1bx+FNPPaVTTz01ShPwRCrZVfV4f6L6cQCoF/MNEB51A7QO9Qa0XpzrLs599x33Dmi+SBvdV155pXbt2qXFxcWyY8eOHdN73vMe/cIv/EKUJuCJ/kSnxkYGVz02NjKo/kSk7z0FgBLmGyA86gZoHeoNaL10sqtq3aVrbCj6LM599x2fF0DzRf4yyh/84AcaHR3V+9//fn3xi1/UF77wBe3du1ejo6P6/ve/r1tuuaVZscJhwwO92r1tU9kkvfJtwcMDvZYiA9BumG+A8KgboHWoN6D11q9NVq279WuTliIzL8599x2fF0DzdRSLxWKUCzz11FP6vd/7Pf3t3/6tVi7V0dGhn//5n9ef//mfa2RkpCmBNksQBEqn08pkMkqlUrbDaTtTczllC8vKFpbUn+hSf6KTyRmRULOohPnGXdStu6gbrIaaNYN6gynUbGXT83ll8kuluksnu2Kz0RvnvruuVs3yeQE0T+R/B3H22WfrK1/5iubm5nTw4EFJ0sjICM/mjikmYwCtwnwDhEfdAK1DvQGtt35tMrabu3Huu+/4vACap2kP/BkYGNDFF1/crMsBAAAAAAAAAFCXSM/oBgAAAAAAAADANr7C1TErz2YK8ktKJ7u0hmczATXZrBvbNRvn9m333aYjQUFzC4sKCstKJTs10NutdamE7bDqZvremby+z7G34vom+Zwbn/OOk3EvgdrivD6k7/FtPwqfYwcaZWrcs9HtkKdnF7RzfEKPTc6WXlv5tt2Ng30WIwPcZbNubNdsnNu33Xebnpld0I5V+n7rtk06y4O+m753Jq/vc+ytuL5JPufG57zjZNxLoLY4rw/pe3zbj8Ln2IFGmRz3PLrEEVNzubKbLEn7J2e1a3xCU3M5S5EB7rJZN7ZrNs7t2+67TUeCQtkmt/STvu8cn9CRoGApsvqYvncmr+9z7K24vkk+58bnvONk3EugtjivD+l7fNuPwufYgUaZHvdsdDsiW1guu8kr9k/OKltYbnFEgPts1o3tmo1z+7b7btPcwmLVvs8tLLY4onBM3zuT1/c59lZc3ySfc+Nz3nEy7iVQW5zXh/Q9vu1H4XPsQKNMj3s2uh0R5JeqHs8Wqh8H4shm3diu2Ti3b7vvNgU1PvRrHbfN9L0zeX2fY2/F9U3yOTc+5x0n414CtcV5fUjf49t+FD7HDjTK9Lhno9sRqWRX1eP9ierHgTiyWTe2azbO7dvuu02pRPWv1qh13DbT987k9X2OvRXXN8nn3Picd5yMewnUFuf1IX2Pb/tR+Bw70CjT456Nbkf0Jzo1NjK46rGxkUH1O755Adhgs25s12yc27fdd5sG+rqr9n2gr7vFEYVj+t6ZvL7Psbfi+ib5nBuf846TcS+B2uK8PqTv8W0/Cp9jBxpletyz0e2I4YFe7d62qexmr3zr6PBAr6XIAHfZrBvbNRvn9m333aZ1qYRurdD3W7dt0rpUwlJk9TF970xe3+fYW3F9k3zOjc95x8m4l0BtcV4f0vf4th+Fz7EDjTI97juKxWIx0hU8EwSB0um0MpmMUqmU7XDKTM3llC0sK1tYUn+iS/2JTiY3xFo9NWuzbmzXbJzbt913m44EBc0tLCooLCuV6NRAX7dTm9y16tb0vTN5fZ9jb8X1TfI5N67n3fX1sUtcv5eIB9drNs7rQ/oe3/arsb02Blxkatyz0Q3AadQs4B/qFvALNQv4hZoF/ELNAq3Do0sAAAAAAAAAAF5joxsAAAAAAAAA4DXvvsL1j/7oj3TLLbec9Nq5556rJ5980lJE5VaeMxPkl5ROdmmNR89XOum5r8lODfS69dxXYDVxHre25xub7dvuOxrHvbOH3FdmMjfPzuUUnHDt/kSnziTvzqAugOaK8/rQZvvT83ll8kultlPJLq1fm2xJ25L93Gdyi5o5uqigsKRUsktDfd1K93a3rP0obOcOsMHUuPduo1uSzj//fP393/996c+dne504+nZBe0cn9Bjk7Ol11a+OXTjYJ/FyGp7ZnZBO1aJ/dZtm3SW47EjvuI8bm3PNzbbt913NI57Zw+5r8xkbsi727g/QHPFeX1I3+21Pz2f1w33H9CjB2dKr20dHdLe7ZtbutnfCNu5A2wwOe69fHRJZ2enzjjjjNLP0NCQ7ZAk/eT/RrzwRknS/slZ7Rqf0NRczlJktR0JCmWbhdJPYt85PqEjQcFSZEBlcR63tucbm+3b7jsax72zh9xXZjI3z9a49rMxzrsLqAugueK8PrTZ/vR8vmrb0/N5Y21L9nOfyS2WbXJL0r6DM7rx/gPK5BaNth+F7dwBNpge9+78KnQIBw8e1Pr165VIJHTppZdqz549Ouuss1Z977Fjx3Ts2LHSn4MgMBZXtrBcdqNW7J+cVbawbKztqOYWFqvGPrewGJtHQcCuMDUb53Fre76x2b7tvqNcvXXLvbOH3FdmMjdBjWsHhWWd2fDVG9fK9bHLqAv4wpeajfP60Gb7mfxS1bYz+SWjv9VsO/czRxfLNrlX7Ds4o5mjiy1/hAlrY6Ay0+Peu9/ovuSSS3TvvffqgQce0F133aWnnnpKr371q5XNZld9/549e5ROp0s/GzZsMBZbkF+qejxbqH7cpqDGQKp1HGiWMDUb53Fre76x2b7tvqNcvXXLvbOH3FdmMjeu5r2V62OXuXp/gBfypWbjvD6k7xbbr3F9G3M5a2OgMtPj3ruN7quuukrXXHONNm/erCuvvFJ/8zd/o/n5eX32s59d9f07duxQJpMp/Rw6dMhYbKlkV9Xj/Ynqx21KJar/cn+t40CzhKnZOI9b2/ONzfZt9x3l6q1b7p095L4yk7lxNe+tXB+7zNX7A7yQLzUb5/UhfbfYfo3r25jLWRsDlZke995tdL/Q2rVrdc4552hycnLV4z09PUqlUif9mNKf6NTYyOCqx8ZGBtXv8KbbQF931dgH+vz4tmL4L0zNxnnc2p5vbLZvu+8oV2/dcu/sIfeVmcxNqsa1bf0P2Vauj11GXcAXvtRsnNeHNttPJ7uqtp2usakUle3cD63p1tbR1b+3bevokIbWtP7vhKyNgcpMj3vvN7qPHj2qH/7wh3rxi19sOxQND/Rq97ZNZTds5ZtDhwd6LUVW27pUQrdWiP3WbZva9jnH8Fucx63t+cZm+7b7jsZx7+wh95WZzM2ZNa59Zozz7gLqAmiuOK8Pbba/fm2yatsmn88t2c99urdbe7dvLtvs3jo6pNu2b27587nDsJ07wAbT476jWCwWI12hxd71rnfpda97nTZu3Kjp6WndfPPN+u53v6snnnhCp512Ws3zgyBQOp1WJpMx9n/Cp+ZyyhaWlS0sqT/Rpf5EpzcT1JGgoLmFRQWFZaUSnRro627rzUK4r56ajfO4tT3f2Gzfdt9RWa265d7ZQ+4rM5mbZ+dyCk64dirR6dQmdyvWxy6jLuAb12s2zutDm+1Pz+eVyS+V2k4nu4xvcp/Idu4zuUXNHF0stT+0ptuZTW7WxkA5U+Peu38HMTU1pV//9V/X7OysTjvtNI2Njekf//Ef69rkbhWfJ6R1qURsNgjRPuI8bm3PNzbbt913NI57Zw+5r8xkbs4c6NWZxq6OqKgLoLnivD602f76tcmWbmy/kO3cp3vd2dgOy3buABtMjXvvNro/85nP2A4BAAAAAAAAAOAQ7za6Ud3Kr/4H+SWlk11awz95QR0YN2iUzbHDuAXCM1k31CRcwngE4sl27bM2tsfn/vscO9AoU+Oeje428vTsgnaOT+ixydnSaysPc9842GcxMriMcYNG2Rw7jFsgPJN1Q03CJYxHIJ5s1z5rY3t87r/PsQONMjnuT4kaHNwwNZcrGySStH9yVrvGJzQ1l7MUGVzGuEGjbI4dxi0Qnsm6oSbhEsYjEE+2a5+1sT0+99/n2IFGmR73bHS3iWxhuWyQrNg/OatsYbnFEcEHjBs0yubYYdwC4ZmsG2oSLmE8AvFku/ZZG9vjc/99jh1olOlxz0Z3mwjyS1WPZwvVjyOeGDdolM2xw7gFwjNZN9QkXMJ4BOLJdu2zNrbH5/77HDvQKNPjno3uNpFKdlU93p+ofhzxxLhBo2yOHcYtEJ7JuqEm4RLGIxBPtmuftbE9Pvff59iBRpke92x0t4n+RKfGRgZXPTY2Mqj+BN87inKMGzTK5thh3ALhmawbahIuYTwC8WS79lkb2+Nz/32OHWiU6XHPRnebGB7o1e5tm8oGy8q3lg4P9FqKDC5j3KBRNscO4xYIz2TdUJNwCeMRiCfbtc/a2B6f++9z7ECjTI/7jmKxWIx0Bc8EQaB0Oq1MJqNUKmU7nKabmsspW1hWtrCk/kSX+hOdTI6oyeVx0+416zubY8flcRt31K27TNYNNemvdqxZxiPaWTvWbLPYrn3Wxva43P9aNety7IAppsY9/w6izTAZohGMGzTK5thh3ALhmf6NMsAVjEcgnmzXPmtje3zuv8+xA40yNe55dAkAAAAAAAAAwGtsdAMAAAAAAAAAvMajSwxYec5MkF9SOtmlNTxfCTU8O5dTcMKY6U906kzGTN2oOXsyuUXNHF1UUFhSKtmlob5upXu7W9I2dQOEx3xpB3lvDvIIoJYjQUFzC4sKCstKJTs10NutdalEy9qP8zw1PZ9XJr9U6nsq2aX1a5O2w/JCnMcN0GxsdDfZ07ML2jk+occmZ0uvrXxz6MbBPouRwVWMmWjInz3T83ndcP8BPXpwpvTa1tEh7d2+2fiilvsOhEfd2EHem4M8AqjlmdkF7Vhlnrh12yad1YJ5Is7zVJz7HhW5A5qLR5c00dRcrmyCkqT9k7PaNT6hqbmcpcjgqmdrjJlnGTNVUXP2ZHKLZZvckrTv4IxuvP+AMrlFY21TN0B4zJd2kPfmII8AajkSFMo2uaWfzBM7xyd0JCgYbT/O89T0fL5q36fn85Yic1+cxw1gChvdTZQtLJdNUCv2T84qW1hucURwXVBjzASMmaqoOXtmji6WbXKv2HdwRjNHzW10UzdAeMyXdpD35iCPAGqZW1isOk/MLZhbm0rxnqcy+aWqfc/kl1ockT/iPG4AU9jobqKgxgSeLTDB42SMmWjInz1BjdyazD33HQiPurGDvDcHeQRQS61fdDD9ixBxnqfi3PeoyB3QfGx0N1Eq2VX1eH+i+nHED2MmGvJnT6pGbk3mnvsOhEfd2EHem4M8Aqgllaj+9WO1jkduP8bzVJz7HhW5A5qPje4m6k90amxkcNVjYyOD6jf84Qr/pGqMGdMLMt9Rc/YMrenW1tGhVY9tHR3S0JpuY21TN0B4zJd2kPfmII8Aahno6646Twz0mVubSvGep9LJrqp9T9fYzI2zOI8bwBQ2uptoeKBXu7dtKpuoVr4xd3ig11JkcNWZNcbMmYyZqqg5e9K93dq7fXPZZvfW0SHdtn2z0r3m/jJB3QDhMV/aQd6bgzwCqGVdKqFbK8wTt27bpHWphNH24zxPrV+brNr39WuTliJzX5zHDWBKR7FYLNoOopWCIFA6nVYmk1EqlTLSxtRcTtnCsrKFJfUnutSf6GSCQlXPzuUUnDBmUolONuv+n3pqlpqzJ5Nb1MzRxVLuh9Z0G93kPhF1465WfNaiMcyXdried19q1vU8Aq3iS83acCQoaG5hUUFhWalEpwb6uo1vcp8ozvPU9HxemfxSqe/pZBeb3P9PrZqN87gBmo1/B2EAExLCOnOgV2faDsJj1Jw96d7WbWy/EHUDhMd8aQd5bw7yCKCWdalESze2XyjO89T6tUk2thsU53EDNBuPLgEAAAAAAAAAeI2NbgAAAAAAAACA13h0ySpWnjkbFJaUSnZpqK91/zR/5dlMQX5J6WSX1oR8NtPKc7FWzk/xXCwABkWds3xtG/AVdWMHeV8deQHMsF1bcV4f0vf4th+Fz7EDrmGj+wWm5/O64f4DevTgTOm1raND2rt9s/EN46dnF7RzfEKPTc6WXlv5tt2Ng33GzweAMGzOOcx3QHjUjR3kfXXkBTDDdm3FeX1I3+PbfhQ+xw64iEeXnCCTWyzb5JakfQdndOP9B5TJLRpre2ouVza5SdL+yVntGp/Q1Fyu6vnT8/mq50/P55seM4D4ijpn+do24Cvqxg7yvjryAphhu7bivD6k7/FtPwqfYwdcxUb3CWaOLpZtcq/Yd3BGM0fNbXRnC8tlk9uK/ZOzyhaWq56fyS9VPT+TX4ocIwCsiDpn+do24Cvqxg7yvjryAphhu7bivD6k7/FtPwqfYwdcxUb3CYJC9c3gbI3jkdqusRFdq+2o5wNAGDbnHOY7IDzqxg7yvjryAphhu7bivD6k7/FtPwqfYwdcxUb3CVKJrqrH+2scj9R2MlrbUc8HgDBszjnMd0B41I0d5H115AUww3ZtxXl9SN/j234UPscOuIqN7hMMrenW1tGhVY9tHR3S0JpuY233Jzo1NjK46rGxkUH1J6p/b2g62VX1/HSNCRQAwog6Z/naNuAr6sYO8r468gKYYbu24rw+pO/xbT8Kn2MHXMVG9wnSvd3au31z2Wb31tEh3bZ9s9K95ja6hwd6tXvbprJJbuXbdocHequev35tsur569cmmx4zgPiKOmf52jbgK+rGDvK+OvICmGG7tuK8PqTv8W0/Cp9jB1zVUSwWi7aDaKUgCJROp5XJZJRKpVZ9Tya3qJmji8oWltSf6NLQmm6jm9wnmprLKVtYLrXdn+gMNblNz+eVyS+Vzk8nu9jkhtfqqVnYE3XO8rVtVEfduou6scP1vNuqWdfzAriqVs3arq04rw/pe3zbr8b1mgXaCf8OYhXp3tZtbL9Q1Mls/dokG9sAWsbmAozFHxAedWMHeV8deQHMsF1bcV4f0vf4th+Fz7EDruHRJQAAAAAAAAAAr/Eb3WgbK//cJ8gvKZ3s0poY/XOfOPcddtkce7bH/cpjroLCklLJLg312fvXQEC9TNaN7ZqEGxgHAI4EBc0tLCooLCuV7NRAb7fWpRItadv2HGSzfdtrU9u5X3mM60r7KY8e42o7d4ANpsY9G91oC0/PLmjn+IQem5wtvbbyBQ4bB/ssRmZenPsOu2yOPdvjfno+rxvuP6BHD86UXts6OqS92zd7s6BG/JisG9s1CTcwDgA8M7ugHavMA7du26Sz2nx9aLN922vTOOc+Kp9jBxplctzz6BJ4b2ouV1YgkrR/cla7xic0NZezFJl5ce477LI59myP+0xusewvEpK07+CMbrz/gDK5RaPtA40wWTe2axJuYBwAOBIUyja5pZ/MAzvHJ3QkKBhr2/YcZLN922tT27mfns9XbX96Pm+0/Shs5w6wwfS4Z6Mb3ssWlssKZMX+yVllC8stjqh14tx32GVz7Nke9zNHF8v+IrFi38EZzRxloxvuMVk3tmsSbmAcAJhbWKw6D8wtmFsj2Z6DbLZve21qO/eZ/FLV9jP5JaPtR2E7d4ANpsc9G93wXlDjgytbcPeDLao49x122Rx7tsd9UOP61B1cZLJubNck3MA4ABDU2JyodTxS27bXhzbXxpbXpnHOfVQ+xw40yvS4Z6Mb3kslu6oe709UP+6zOPcddtkce7bHfarG9ak7uMhk3diuSbiBcQAglaj+FWC1jkdq2/b60Oba2PLaNM65j8rn2IFGmR73bHTDe/2JTo2NDK56bGxkUP0GF1S2xbnvsMvm2LM97ofWdGvr6NCqx7aODmloTeu+3R6ol8m6sV2TcAPjAMBAX3fVeWCgz9wayfYcZLN922tT27lPJ7uqtp+usalmk+3cATaYHvdsdMN7wwO92r1tU1mhrHxj6/BAr6XIzItz32GXzbFne9yne7u1d/vmsr9QbB0d0m3bNyvdy0Y33GOybmzXJNzAOACwLpXQrRXmgVu3bdK6VMJY27bnIJvt216b2s79+rXJqu2vX5s02n4UtnMH2GB63HcUi8VipCt4JggCpdNpZTIZpVIp2+GgiabmcsoWlpUtLKk/0aX+RGdsPhjaue/UrNtsjj3b4z6TW9TM0cVS+0Nrutnk/n+oW3eZrBvbNYnGNbNmGQeAea5/zh4JCppbWFRQWFYq0amBvm6jm9wnsj0H2Wzf9trUdu6n5/PK5JdK7aeTXc5scteqWdu5A2wwNe75dxBoG3H+IIhz32GXzbFne9yne9nYhn9M/2sLgHEAYF0q0bKN7ReyPQfZbN/22tR27tevTTqzsR2W7dwBNpga9zy6BAAAAAAAAADgNTa6AQAAAAAAAABe8/bRJR/+8Id1++236/Dhw9qyZYs+9KEP6eKLL27KtZ+dyykoLCvILymd/MlzYs7kn5IAQBnmS8Av1CwawbgBgPowX6IRjBugebzc6L7vvvt0/fXX6+6779Yll1yiO++8U1deeaV+8IMf6PTTT4907adnF7RzfEKPTc6WXlv55s+Ng31RQweAtsF8CfiFmkUjGDcAUB/mSzSCcQM0l5ePLrnjjjv0tre9TW95y1t03nnn6e6771Zvb68+8YlPRLrus3O5sglGkvZPzmrX+ISenctFuj4AtAvmS8Av1CwawbgBgPowX6IRjBug+bz7je7FxUU9/vjj2rFjR+m1U045Ra95zWv09a9/vez9x44d07Fjx0p/DoKg4rWDwnLZBLNi/+SsgsKyzowQO4DawtQs7GG+xImoW/dRszhRvTXLuAHcwOes+5gvcSI+ZwF7vPuN7pmZGT3//PNat27dSa+vW7dOhw8fLnv/nj17lE6nSz8bNmyoeO0gv1S17Wyh+nEA0YWpWdjDfIkTUbfuo2ZxonprlnEDuIHPWfcxX+JEfM4C9ni30R3Wjh07lMlkSj+HDh2q+N5UsqvqtfoT1Y8DiC5MzcIe5kuciLp1HzWLE9Vbs4wbwA18zrqP+RIn4nMWsMe7R5cMDQ3pRS96kY4cOXLS60eOHNEZZ5xR9v6enh719PTUde1UolNjI4Pav8o/HRkbGVQq4V26AO+EqVnYw3yJE1G37qNmcaJ6a5ZxA7iBz1n3MV/iRHzOAvZ49xvd3d3detnLXqaHHnqo9Nrx48f10EMP6dJLL4107TMHerV72yaNjQye9PrKN96eOdAb6foA0C6YLwG/ULNoBOMGAOrDfIlGMG6A5usoFotF20GEdd999+naa6/VRz7yEV188cW688479dnPflZPPvlk2bO7XygIAqXTaWUyGaVSqVXf8+xcTkFhWdnCkvoTXUolOplgAEvqqVnYw3yJ1VC37qJmsZpaNcu4AdzC56y7mC+xGj5ngdbx8t9BvOENb9CPfvQj3XTTTTp8+LAuvPBCPfDAAzU3uet15kAv32wLAHVgvgT8Qs2iEYwbAKgP8yUawbgBmsfLjW5Juu6663TdddfZDgMAAAAAAAAAYJl3z+gGAAAAAAAAAOBEbHQDAAAAAAAAALzm7aNLGrXy3ZtBEFiOBPBbf3+/Ojo6jLdDzQLN0aqalahboBmoWcAv1CzgF2oW8Eu9NRu7je5sNitJ2rBhg+VIAL+16lveqVmgOVpVsxJ1CzQDNQv4hZoF/ELNAn6pt2Y7iiv/aykmjh8/runp6Zr/JyAIAm3YsEGHDh1q2eTXLshdY3zLW6v+Dzg1Wxt9p+/19L2Vv7VST93G6d7R1/Zkuq/UbGu1c//auW+SO/2jZt1B3+PZdylc/6lZrCD39pio2dj9Rvcpp5yi4eHhut+fSqUY6A0id40hbyejZutH3+m7K8LUrYvxm0Jf21M79JWa/Q/t3L927pvU/v07ETVbH/oez75L7vWfmvUDubenmbnnyygBAAAAAAAAAF5joxsAAAAAAAAA4DU2uivo6enRzTffrJ6eHtuheIfcNYa8RRPn/NF3+u4j3+MPg762pzj1VWr//rZz/9q5b1L7969Rcc4LfY9n3yW/++9z7L4j9/aYyH3svowSAAAAAAAAANBe+I1uAAAAAAAAAIDX2OgGAAAAAAAAAHiNjW4AAAAAAAAAgNfY6AYAAAAAAAAAeI2NbgAAAAAAAACA19joBgAAAAAAAAB4jY1uAAAAAAAAAIDX2OgGAAAAAAAAAHiNjW4AAAAAAAAAgNfY6AYAAAAAAAAAeI2NbgAAAAAAAACA19joBgAAAAAAAAB4jY1uAAAAAAAAAIDXYrfRXSwWFQSBisWi7VAA1IGaBfxD3QJ+oWYBv1CzgF+oWaB1YrfRnc1mlU6nlc1mbYcCoA7ULOAf6hbwCzUL+IWaBfxCzQKtE7uNbgAAAAAAAABAe2GjGwAAAAAAAADgNTa6AQAAAAAAAABeY6MbAAAAAAAAAOC1TtsBuGhqLqdsYVlBfknpZJfWJDo1PNBb9/mZ3KJmji4qKCwplezSUF+30r3dLWnb9vlR+u67KLmLmrfp+bwy+aVS26lkl9avTbYkdsSbzbHDuPWX6Xtn8vo+x276+j7HblrUz2mfhOmrK+MxzDrMVMxhrhvmvSbHnqmYwzD1d4841SzQLnxeJ/gcO9AoU+Pey43uZ599VjfccIO+8pWvKJfLaWRkRPfcc49e/vKXR77207ML2jk+occmZ0uvjY0Mave2Tdo42Ffz/On5vG64/4AePThTem3r6JD2bt9cc3EUtW3b50fpu++i5C5q3mzfd8SXzbHDuPWX6Xtn8vo+x276+j7HbprPsYcVpq+ujMcw6zBTMZvKmys5NhWHqb97xKlmgXbhc936HDvQKJPj3rtHl8zNzelVr3qVurq69JWvfEVPPPGEPvCBD2hgYCDytafmcmWJlqT9k7PaNT6hqblc1fMzucWyxZYk7Ts4oxvvP6BMbtFY27bPj9J330XJXdS8Tc/nq7Y9PZ83FjvizebYYdz6y/S9M3l9n2M3fX2fYzct6ue0T8L01ZXxGGYdZirmMNcN816TY89UzGGY+rtHnGoWaBc+rxN8jh1olOlx791vdN92223asGGD7rnnntJrZ599dsX3Hzt2TMeOHSv9OQiCiu/NFpbLEr1i/+SssoXlqrHNHF0sW2yt2HdwRjNHFyv+U7qobds+P0rffRcld1HzlskvVW07k1+q+hstUe+7CWFqFvbYHDsujtu4q7duTd87k9f3OXbT1/c5dtOifk6bYuKzNkxfXRmPYdZhpmIOc90w7zU59kzFHIapv3vEqWaBduHiOsGVtTHgItPj3rvf6P7iF7+ol7/85brmmmt0+umn66KLLtLHPvaxiu/fs2eP0ul06WfDhg0V3xvkl6q2nS1UPx7UOF7t/Mht2z4/Qt99FyV3UfNm+76bEKZmYY/NsePiuI27euvW9L0zeX2fYzd9fZ9jN83V2E181obpqyvjMcw6zFTMpvLmTI5N5c3Q3z3iVLNAu3Cxbl1ZGwMuMj3uvdvo/td//VfdddddGh0d1YMPPqjf/d3f1Tve8Q598pOfXPX9O3bsUCaTKf0cOnSo4rVTya6qbfcnqh9P1The7fzIbds+P0LffRcld1HzZvu+mxCmZmGPzbHj4riNu3rr1vS9M3l9n2M3fX2fYzfN1dhNfNaG6asr4zHMOsxUzKby5kyOTeXN0N894lSzQLtwsW5dWRsDLjI97r3b6D5+/Lh+5md+Rrfeeqsuuugi/c7v/I7e9ra36e677171/T09PUqlUif9VNKf6NTYyOCqx8ZGBtWfqP6kl6E13do6OrTqsa2jQxpaU/mfz0Vt2/b5Ufruuyi5i5q3dLKratvpmhNItPtuQpiahT02x46L4zbu6q1b0/fO5PV9jt309X2O3bSon9OmmPisDdNXV8ZjmHWYqZjDXDfMe02OPVMxh2Hq7x5xqlmgXbi4TnBlbQy4yPS4926j+8UvfrHOO++8k1776Z/+aT3zzDORrz080Kvd2zaVJXzlmz+HB3qrnp/u7dbe7ZvLFl1bR4d02/bNVZ8TF7Vt2+dH6bvvouQuat7Wr01WbbvWMwSj3nfEl82xw7j1l+l7Z/L6Psdu+vo+x25a1M9pn4TpqyvjMcw6zFTMYa4b5r0mx56pmMMw9XePONUs0C58Xif4HDvQKNPjvqNYLBYjXaHFfuM3fkOHDh3So48+WnrtD/7gD/SNb3xDX/va12qeHwSB0um0MplMxf+rNjWXU7awrGxhSf2JLvUnOkMlOpNb1MzRxdL5Q2u6615sRW3b9vlR+u67KLmLmrfp+bwy+aXS+elkV6iFeNT7blI9NQt7bI4dl8dt3NWqW9P3zuT1fY7d9PV9jt20qJ/TpjXzszZMX10Zj2HWYaZiDnPdMO81OfZMxRyGqb97xKlmgXbh8jrB9toYcJGpce/dRve3vvUtvfKVr9Qtt9yiX/u1X9M3v/lNve1tb9NHP/pRvelNb6p5PosCwC/ULOAf6hbwCzUL+IWaBfxCzQKt492jS17xildofHxcf/VXf6ULLrhAf/zHf6w777yzrk1uAAAAAAAAAED78fLJ9r/8y7+sX/7lX7YdBgAAAAAAAADAAd79RjcAAAAAAAAAACdioxsAAAAAAAAA4DU2ugEAAAAAAAAAXmOjGwAAAAAAAADgNTa6AQAAAAAAAABeY6MbAAAAAAAAAOA1NroBAAAAAAAAAF5joxsAAAAAAAAA4DU2ugEAAAAAAAAAXmOjGwAAAAAAAADgNTa6AQAAAAAAAABeY6MbAAAAAAAAAOA1NroBAAAAAAAAAF5joxsAAAAAAAAA4DU2ugEAAAAAAAAAXmOjGwAAAAAAAADgNTa6AQAAAAAAAABeY6MbAAAAAAAAAOA1NroBAAAAAAAAAF5joxsAAAAAAAAA4DU2ugEAAAAAAAAAXuu0HUBYf/RHf6RbbrnlpNfOPfdcPfnkk01rY2oup2xhWUF+Selkl9YkOjU80NuS8222bfv8qG1ncouaObqooLCkVLJLQ33dSvd2131+VFHijxp71Nz5zmb/bec+zu3b7rtNvvd9ej6vTH6pFH8q2aX1a5O2w3KC6Xtr8vq+j0ty0xxh+ho2L6bmDpMxm4jB9pp3hW95cyFeoJ1RN40jd4gjU+Peu41uSTr//PP193//96U/d3Y2rxtPzy5o5/iEHpucLb02NjKo3ds2aeNgn9HzbbZt+/yobU/P53XD/Qf06MGZ0mtbR4e0d/vmlmyeRIk/auxRc+c7m/23nfs4t2+77zb53nff4zfJdG5MXt/3+0pumiNMX8PmxVQeTcZsIgbba95GYnYhby7EC7Qz6qZx5A5xZHLce/noks7OTp1xxhmln6GhoaZcd2ouV5ZoSdo/Oatd4xOamssZO99m27bPj9p2JrdYtuCXpH0HZ3Tj/QeUyS1WPT+qKPFHjT1q7nxns/+2cx/n9m333Sbf+z49n68a//R83lJk9pm+tyav7/u4JDfNEaavYfNiau4wGbOJGGyveRuJ2YW8uRAv0M6om8aRO8SR6XHv5W90Hzx4UOvXr1cikdCll16qPXv26Kyzzlr1vceOHdOxY8dKfw6CoOJ1s4XlskSv2D85q2xhuWpcUc632bbt86O2PXN0sWzBv2LfwRnNHF00+s85o8QfNfaouXNRK2s2Ctu5j3P7tvtuk6t9r7duM/mlqvFn8kuxfYSJ6Xtr8vqujst6xTE3YT5r6xWmr2HzYmruMBmziRhsr3lX+JY3F+KNykTNAs3iat3YVG/NkjvEkelx791vdF9yySW699579cADD+iuu+7SU089pVe/+tXKZrOrvn/Pnj1Kp9Olnw0bNlS8dpBfqtp2tlD9eJTzbbZt+/zIbdc4Xuv8qCL1PWLsUXPnolbWbBS2cx/n9m333SZX+15v3boavwtM58bk9X2/r3HMTZjP2nqF6WvYvJjKo8mYjcRgec1bisO3vDkQb1QmahZoFlfrxibWxkBlpse9dxvdV111la655hpt3rxZV155pf7mb/5G8/Pz+uxnP7vq+3fs2KFMJlP6OXToUMVrp5JdVdvuT1Q/HuV8m23bPj9y2zWO1zo/qkh9jxh71Ny5qJU1G4Xt3Me5fdt9t8nVvtdbt67G7wLTuTF5fd/vaxxzE+aztl5h+ho2L6byaDJmIzFYXvOW4vAtbw7EG5WJmgWaxdW6sYm1MVCZ6XHv3Ub3C61du1bnnHOOJicnVz3e09OjVCp10k8l/YlOjY0MrnpsbGRQ/YnqT3qJcr7Ntm2fH7XtoTXd2jq6+nPat44OaWiN2X/CGSX+qLFHzZ2LWlmzUdjOfZzbt913m1zte711m052VY0/XWPR085M31uT13d1XNYrjrkJ81lbrzB9DZsXU3OHyZhNxGB7zbvCt7y5EG9UJmoWaBZX68amemuW3CGOTI977ze6jx49qh/+8Id68YtfHPlawwO92r1tU1nCV775c3ig19j5Ntu2fX7UttO93dq7fXPZwn/r6JBu277Z+LMKo8QfNfaoufOdzf7bzn2c27fdd5t87/v6tcmq8cf1+dyS+Xtr8vq+j0ty0xxh+ho2L6bmDpMxm4jB9pq3kZhdyJsL8QLtjLppHLlDHJke9x3FYrEY6Qot9q53vUuve93rtHHjRk1PT+vmm2/Wd7/7XT3xxBM67bTTap4fBIHS6bQymUzF/6s2NZdTtrCsbGFJ/Yku9Sc6QyU6yvk227Z9ftS2M7lFzRxdLJ0/tKa7ZQt+KVr8UWOPmjuXtaJmo7Cd+zi3b7vvNrne91p1Oz2fVya/VIo/neyK9Sb3iUzfW5PXd31c1hLn3NTzWVuvMH0NmxdTc4fJmE3EYHvNu8K3vLkQb7M0s2aBZnG9bmyqVbPkDnFkatx7t9H9xje+Ufv27dPs7KxOO+00jY2Naffu3fqpn/qpus5nUQD4hZoF/EPdAn6hZgG/ULOAX6hZoHW8e+DPZz7zGdshAAAAAAAAAAAc4v0zugEAAAAAAAAA8cZGNwAAAAAAAADAa2x0AwAAAAAAAAC8xkY3AAAAAAAAAMBrbHQDAAAAAAAAALzGRjcAAAAAAAAAwGtsdAMAAAAAAAAAvMZGNwAAAAAAAADAa2x0AwAAAAAAAAC8xkY3AAAAAAAAAMBrbHQDAAAAAAAAALzGRjcAAAAAAAAAwGtsdAMAAAAAAAAAvMZGNwAAAAAAAADAa2x0AwAAAAAAAAC8xkY3AAAAAAAAAMBrbHQDAAAAAAAAALzGRjcAAAAAAAAAwGtsdAMAAAAAAAAAvMZGNwAAAAAAAADAa2x0AwAAAAAAAAC8xkY3AAAAAAAAAMBrnbYDiGLv3r3asWOHfv/3f1933nln0647NZdTtrCsIL+kdLJLaxKdGh7orfv86fm8Mvml0vmpZJfWr022pG2fzz8SFDS3sKigsKxUslMDvd1al0rU3XYmt6iZo4sKCktKJbs01NetdG933edHFSX+qHkHbLE5duNcN3HuO6IxOXYYl5XFKTdh1mOujMcwa/d2vq5JpuKI8vcuoN24Uu8Ij3uHODI17r3d6P7Wt76lj3zkI9q8eXNTr/v07IJ2jk/oscnZ0mtjI4PavW2TNg72GT3fZtu2z39mdkE7Vjn31m2bdFYdbU/P53XD/Qf06MGZ0mtbR4e0d/vmlix2o8QfNe+ALTbHbpzrJs59RzQmxw7jsrI45SbMesyV8ch7zTMVhyv9A1xAPfiLe4c4MjnuvXx0ydGjR/WmN71JH/vYxzQwMNC0607N5coSLUn7J2e1a3xCU3O5qudPz+ernj89nzfWts/nHwkKZZvEK+fuHJ/QkaBQte1MbrHsL1WStO/gjG68/4AyucWq50cVJf6oeQdssTl241w3ce47ojE5dhiXlcUpN2HWY66MxzBr93a+rkmm4ojy9y6g3bhS7wiPe4c4Mj3uvdzofvvb365f+qVf0mte85qa7z127JiCIDjpp5JsYbks0Sv2T84qW1iu2lYmv1T1/Ex+yVjbPp8/t7BY9dy5heob1TNHF8v+UrVi38EZzRw1u9EdJf6oeW9HYWoW9tgcu3GuG1f7Tt26z+TYcXVcusDV3Jio2TDrMVfGY5i1eztf1yRTcUT5e5eP+JxFNa7UO/5DvTXLvUMcmR733m10f+Yzn9E//dM/ac+ePXW9f8+ePUqn06WfDRs2VHxvUGNBlC1UPx7lfJtt2z4/qDGIax+PFntUUeKPmvd2FKZmYY/NsRvnunG179St+0yOHVfHpQtczY2Jmg2zHnNlPPJe80zF4Ur/WoXPWVQTt3rwQb01y71DHJke915tdB86dEi///u/r7/8y79UIlHfl/zt2LFDmUym9HPo0KGK700lu6peqz9R/XiU8222bfv8VKL6o+JrH48We1RR4o+a93YUpmZhj82xG+e6cbXv1K37TI4dV8elC1zNjYmaDbMec2U88l7zTMXhSv9ahc9ZVBO3evBBvTXLvUMcmR73Xm10P/744/r3f/93/czP/Iw6OzvV2dmpRx55RB/84AfV2dmp559/vuycnp4epVKpk34q6U90amxkcNVjYyOD6q+xoZlOdlU9P13lZkZt2+fzB/q6q5470Nddte2hNd3aOjq06rGto0MaWlP9/KiixB817+0oTM3CHptjN85142rfqVv3mRw7ro5LF7iaGxM1G2Y95sp4DLN2b+frmmQqjih/7/IRn7OoxpV6x3+ot2a5d4gj0+O+ZRvdP/zhD/Xud79bv/7rv65///d/lyR95Stf0fe+9726r3HFFVdoYmJC3/3ud0s/L3/5y/WmN71J3/3ud/WiF70oUozDA73avW1TWcJXvvlzeKC36vnr1yarnv/Cb5tvZts+n78uldCtFc69ddsmrUtV/+39dG+39m7fXPaXq62jQ7pt+2ale81udEeJP2reAVtsjt04102c+45oTI4dxmVlccpNmPWYK+MxzNq9na9rkqk4ovy9C2g3rtQ7wuPeIY5Mj/uOYrFYjHSFOjzyyCO66qqr9KpXvUr79u3T97//fb30pS/V3r179e1vf1uf+9znGr72ZZddpgsvvFB33nlnXe8PgkDpdFqZTKbi/1WbmsspW1hWtrCk/kSX+hOdoRI9PZ9XJr9UOj+d7Kp7sRW1bZ/PPxIUNLewqKCwrFSiUwN93TU3uU+UyS1q5uhiqe2hNd3GN7lPFCX+qHlvZ/XULOyxOXbjXDeu9526dZfJseP6uLTJ9dw0s2bDrMdcGY9h1u7tfF2TTMUR5e9dPuNzFqtxpd5RrlbNcu8QR6bGfUs2ui+99FJdc801uv7669Xf36//+3//r1760pfqm9/8pl7/+tdramqq4Wub2OgG4A5qFvAPdQv4hZoF/ELNAn6hZoHWackDfyYmJvTpT3+67PXTTz9dMzMzka798MMPRzofAAAAAAAAAOC3ljyje+3atXruuefKXv/Od76jM888sxUhAAAAAAAAAADaVEs2ut/4xjfqhhtu0OHDh9XR0aHjx4/rscce07ve9S795m/+ZitCAAAAAAAAAAC0qZZsdN966636T//pP2nDhg06evSozjvvPG3dulWvfOUr9e53v7sVIQAAAAAAAAAA2lRLntHd3d2tj33sY7rppps0MTGho0eP6qKLLtLo6GgrmgcAAAAAAAAAtLGWbHTv27ev9BvdGzZsKL2+tLSkr3/969q6dWsrwgAAAAAAAAAAtKGWPLrksssu05YtW/SP//iPJ73+4x//WJdffnkrQgAAAAAAAAAAtKmWbHRLP/lCyiuuuEL33nvvSa8Xi8VWhQAAAAAAAAAAaEMt2eju6OjQjh079Bd/8Re67rrrdP3115c2uDs6OloRAgAAAAAAAACgTbVko3tlU/v1r3+9Hn30UX3uc5/TVVddpfn5+VY0DwAAAAAAAABoYy17dMmKiy66SN/85jc1Pz+vK664otXNAwAAAAAAAADaTEs2uq+99lolk8nSn8844ww98sgjuuKKK3TWWWe1IgQAAAAAAAAAQJvqbEUj99xzT9lrPT09+uQnP9mK5gEAAAAAAAAAbczYRveBAwd0wQUX6JRTTtGBAweqvnfz5s2mwgAAAAAAAAAAtDljG90XXnihDh8+rNNPP10XXnihOjo6Sl9KKan0546ODj3//POmwgAAAAAAAAAAtDljG91PPfWUTjvttNJ/AwAAAAAAAABggrGN7o0bN6763wAAAAAAAAAANNMpJi/+L//yL/rmN7950msPPfSQLr/8cl188cW69dZbTTYPAAAAAAAAAIgBoxvdN9xwg770pS+V/vzUU0/pda97nbq7u3XppZdqz549uvPOO02GAAAAAAAAAABoc8YeXSJJ3/72t/WHf/iHpT//5V/+pc455xw9+OCDkqTNmzfrQx/6kN75zneaDAMAAAAAAAAA0MaM/kb3zMyMhoeHS3/+6le/qte97nWlP1922WX6t3/7N5MhAAAAAAAAAADanNGN7lNPPVXPPfecJOn48eP69re/rZ/92Z8tHV9cXFSxWDQZAgAAAAAAAACgzRnd6L7sssv0x3/8xzp06JDuvPNOHT9+XJdddlnp+BNPPKGXvOQlJkMAAAAAAAAAALQ5o8/o3r17t37+539eGzdu1Ite9CJ98IMfVF9fX+n4X/zFX+jnfu7nQl3zrrvu0l133VV65Mn555+vm266SVdddVXT4p6ayylbWFaQX1I62aU1iU4ND/S25PyobUdls+/T83ll8kulc1PJLq1fm2xZ7FFlcouaObqooLCkVLJLQ33dSvd213Wuzbw343zbfI/fZzZzb/u+R6l5n9tuBtv3Ls5M5p77WpnvuXl2LqfghPj7E506s0L8YfoaNi+mrm0y5nqFuW6Yz4CwnxftnDcXrov2x9hBIxg3iCNT497oRvdLXvISff/739f3vvc9nXbaaVq/fv1Jx2+55ZaTnuFdj+HhYe3du1ejo6MqFov65Cc/qV/91V/Vd77zHZ1//vmRY356dkE7xyf02ORs6bWxkUHt3rZJGwf7qpwZ/fyobUflc99t5256Pq8b7j+gRw/OlF7bOjqkvds319yst91327mLyvf4fWYz97bve5Sa97ntZrB97+LMZO65r5X5npsw8Zt6rytxmLqXYa4b5jMg7OdFO+fNheui/TF20AjGDeLI5Lg3+ugSSers7NSWLVvKNrklacuWLRocHAx1vde97nX6xV/8RY2Ojuqcc87R7t27tWbNGv3jP/5j5Fin5nJliZak/ZOz2jU+oam5nLHzo7Ydlc2+T8/nq547PZ83GntUmdxi2V8iJGnfwRndeP8BZXKLFc+1mfdmnG+b7/H7zGbubd/3KDXvc9vNYPvexZnJ3HNfK/M9N8/WiP/ZE+IP09eweTF1bZMx1yvMdcN8BoT9vGjnvLlwXbQ/xg4awbhBHJke90Z/o9u0559/Xv/n//wfLSws6NJLL131PceOHdOxY8dKfw6CoOL1soXlskSv2D85q2xhuWo8Uc6P2nZUNvueyS9VPTeTX6r6W4q2czdzdLHsLxEr9h2c0czRxYr/RNRm3ptxvgmtrFk0zmbubd/3KDXvc9vV1Fu3tu9dnJnMPfe1MldzyqaEegAAYrRJREFUU2/NBjXiDwrLOvP//TlMX8PmxdS1TcZcrzDXDfMZEPbzop3z5sJ1owqzPoYdro4d2MHaGKjM9Lg3/hvdJkxMTGjNmjXq6enRf//v/13j4+M677zzVn3vnj17lE6nSz8bNmyoeN0gv1S13Wyh+vEo50dtOyqf+249dzWu73LfbeduNa2sWTTOZu5t3/coNe9z29XUW7e2712cmcw997UyV3NjomZNvdeVOEzdy1AxhPgMCPt50c55c+G6UYVZH8MOV8cO7GBtDFRmetx7udF97rnn6rvf/a6+8Y1v6Hd/93d17bXX6oknnlj1vTt27FAmkyn9HDp0qOJ1U8muqu32J6ofj3J+1Laj8rnv1nNX4/ou99127lbTyppF42zm3vZ9j1LzPrddTb11a/vexZnJ3HNfK3M1NyZq1tR7XYnD1L0MFUOIz4CwnxftnDcXrhtVmPUx7HB17MAO1sZAZabHvZcb3d3d3RoZGdHLXvYy7dmzR1u2bNGf/dmfrfrenp4epVKpk34q6U90amxk9WeGj40Mqj9R/UkvUc6P2nZUNvueTnZVPTddswjs5m5oTbe2jg6temzr6JCG1lR+jIDNvDfjfBNaWbNonM3c277vUWre57arqbdubd+7ODOZe+5rZa7mpt6aTdWIP3VC/GH6GjYvpq5tMuZ6hblumM+AsJ8X7Zw3F64bVZj1MexwdezADtbGQGWmx33LNroLhYK++c1v6ktf+pK++MUvnvQT1fHjx096/lGjhgd6tXvbprKEr3zz5/BAr7Hzo7Ydlc2+r1+brHputedzNyP2qNK93dq7fXPZXya2jg7ptu2bqz4v12bem3G+bb7H7zObubd936PUvM9tN4PtexdnJnPPfa3M99ycWSP+M0+IP0xfw+bF1LVNxlyvMNcN8xkQ9vOinfPmwnXR/hg7aATjBnFketx3FIvFYqQr1OGBBx7Qb/7mb2pmpvwLUTo6OvT888/Xfa0dO3boqquu0llnnaVsNqtPf/rTuu222/Tggw/q53/+52ueHwSB0um0MplMxf+rNjWXU7awrGxhSf2JLvUnOkMlOsr5UduOymbfp+fzyuSXSuemk101N7mbGXtUmdyiZo4ultofWtNd96aTzbw343yTWlGzaJzN3Nu+71Fq3ue261Grbm3fuzgzmXvua2Wu56ZWzT47l1NwQvypROdJm9wnCtPXsHkxdW2TMdcrzHXDfAaE/bxo57y5cN1mqWd9DDtcHzuwg7UxUM7UuG/JRvfo6Khe+9rX6qabbtK6desiXeu3fuu39NBDD+m5555TOp3W5s2bdcMNN9S1yS2xKAB8Q80C/qFuAb9Qs4BfqFnAL9Qs0DoteeDPkSNHdP3110fe5Jakj3/8402ICAAAAAAAAADQLlryjO7/8l/+ix5++OFWNAUAAAAAAAAAiJmW/Eb3n//5n+uaa67Ro48+qk2bNqmrq+uk4+94xztaEQYAAAAAAAAAoA21ZKP7r/7qr/S3f/u3SiQSevjhh9XR0VE61tHRwUY3AAAAAAAAAKBhLdno3rVrl2655RbdeOONOuWUljwtBQAAAAAAAAAQEy3ZdV5cXNQb3vAGNrkBAAAAAAAAAE3Xkp3na6+9Vvfdd18rmgIAAAAAAAAAxExLHl3y/PPP6/3vf78efPBBbd68uezLKO+4445WhAEAAAAAAAAAaEMt2eiemJjQRRddJEn653/+55OOnfjFlAAAAAAAAAAAhNWSje6vfvWrrWgGAAAAAAAAABBDLf12yMnJST344IPK5/OSpGKx2MrmAQAAAAAAAABtqCUb3bOzs7riiit0zjnn6Bd/8Rf13HPPSZJ+67d+S//jf/yPVoQAAAAAAAAAAGhTLdno/oM/+AN1dXXpmWeeUW9vb+n1N7zhDXrggQdaEQIAAAAAAAAAoE215Bndf/u3f6sHH3xQw8PDJ70+Ojqqp59+uhUhAAAAAAAAAADaVEt+o3thYeGk3+Re8eMf/1g9PT2tCAEAAAAAAAAA0KZastH96le/Wp/61KdKf+7o6NDx48f1/ve/X5dffnkrQgAAAAAAAAAAtKmWPLrk/e9/v6644gp9+9vf1uLiov7wD/9Q3/ve9/TjH/9Yjz32WCtCAAAAAAAAAAC0qZb8RvcFF1ygf/mXf9HY2Jh+9Vd/VQsLC3r961+v73znO/qpn/qpVoQAAAAAAAAAAGhTLfmN7meeeUYbNmzQrl27Vj121llntSIMAAAAAAAAAEAbaslvdJ999tn60Y9+VPb67Oyszj777FaEAAAAAAAAAABoUy3Z6C4Wi+ro6Ch7/ejRo0okEq0IAQAAAAAAAADQpow+uuT666+XJHV0dOg973mPent7S8eef/55feMb39CFF15oMgQAAAAAAAAAQJszutH9ne98R9JPfqN7YmJC3d3dpWPd3d3asmWL3vWud5kMAQAAAAAAAADQ5oxudH/1q1+VJL3lLW/Rn/3ZnymVSkW+5p49e/TXf/3XevLJJ5VMJvXKV75St912m84999zI115xJChobmFRQWFZqWSnBnq7tS5V/yNWpuZyyhaWFeSXlE52aU2iU8MDvbVPjHiu7+fbjj2TW9TM0UUFhSWlkl0a6utWure79olNaN9236Oej/iyOXbiPG5977vv8fvMZO59v6/kpjnC9DVsXsKs0U3FEea90/N5ZfJLpfemkl1avzbpbLyNvL9eYa4bZk0eJsem4oVbuHfwEeMWcWRq3Bvd6F5xzz33NO1ajzzyiN7+9rfrFa94hZaXl7Vz50699rWv1RNPPKG+vr7I139mdkE7xif02ORs6bWxkUHdum2Tzhqsff2nZxe0c5Xzd2/bpI01zo9yru/n2459ej6vG+4/oEcPzpRe2zo6pL3bN9e1WPa571HPR3zZHDtxHre+9933+H1mMve+31dy0xxh+ho2L2HW6KbiaOf3NvL+eoW5bpg1uQvxwi3cO/iIcYs4MjnuO4rFYjFqgJW8/vWvr+t9f/3Xf91wGz/60Y90+umn65FHHtHWrVtrvj8IAqXTaWUymbLfMD8SFHT9Z797UqJXjI0M6gO/dmHV3+yemsvphvsPVDx/7/bNVX/botFzfT/fduyZ3KKu+6vvnLSgXrF1dEgf+vWLqv5mt899j3p+K1SrWdhjc+z4MG5N8aXvlerWl/jbkcnc+35fyU1zPmvD9DVsXsKs0U3FEea90/N5/X+f+78V3/v+/7KltGnrQryNvL9eYa4bZk0eJsem4rWJ9XE5X+4d4om1MfAfTI97o7/RnU6nTV5ekpTJZCRJp5566qrHjx07pmPHjpX+HARBxWvNLSyummhJ2j85q7mFxaob3dnCctXzs4VlI+f6fr7t2GeOLq66oJakfQdnNHN0sepGt899j3q+CWFqFvbYHDsujttWcbXv9datq/HHgcnc+35f45gbE5+1YfoaNi9h1uim4gjz3kx+qep7M/ml0iasC/E28v56hblumDV5mBybireVWB/X5uq9QzyxNgYqMz3ujW50N/ORJas5fvy43vnOd+pVr3qVLrjgglXfs2fPHt1yyy11XS+okcyax/NLVY9nC5WPRznX9/Otx17jeFv3PeL5JoSpWdhjc+y4OG5bxdW+11u3rsYfByZz7/t9jWNuTHzWhulr2LyEWaObiqOd39vI++sVKuYQa3IX4m0l1se1uXrvEE+sjYHKTI/7UyKdbdnb3/52/fM//7M+85nPVHzPjh07lMlkSj+HDh2q+N5Uovq+f83jya6qx/sTlY9HOdf3863HXuN4W/c94vkmhKlZ2GNz7Lg4blvF1b7XW7euxh8HJnPv+32NY25MfNaG6WvYvIRZo5uKo53f28j76xUq5hBrchfibSXWx7W5eu8QT6yNgcpMj3tvN7qvu+46felLX9JXv/pVDQ8PV3xfT0+PUqnUST+VDPR1a2xkcNVjYyODGuir/PgKSepPdFY9v7/KIj3Kub6fbzv2oTXd2jo6tOqxraNDGlrDfW+lMDULe2yOHRfHbau42vd669bV+OPAZO59v69xzI2Jz9owfQ2blzBrdFNxhHlvOtlV9b3pE/6C50K8jby/XmGuG2ZNHibHpuJtJdbHtbl67xBPrI2BykyPe+82uovFoq677jqNj4/rH/7hH3T22Wc37drrUgndum1TWcJXvtG92vO5JWl4oFe7K5y/e9umqg9Tj3Ku7+fbjj3d26292zeXLay3jg7ptu2bqz6fO2r7tvse9XzEl82xE+dx63vffY/fZyZz7/t9JTfNEaavYfMSZo1uKo4w712/Nln1vSc+O9qFeBt5f73CXDfMmjxMjk3FC7dw7+Ajxi3iyPS47ygWi8VIV2ix3/u939OnP/1pfeELX9C5555bej2dTiuZrL2gqecbqo8EBc0tLCooLCuV6NRAX3fNTe4TTc3llC0sK1tYUn+iS/2JzrpvVJRzfT/fduyZ3KJmji6Wzh9a011zk7tZ7dvue9TzTeJb5d1mc+y4PG5Nc73vterW9fjbmcnc+35f45ybZn7Whulr2LyEWaObiiPMe6fn88rkl0rvTSe7Km7AuhBvI++vV5jrhlmTh8mxqXhtYH1cmev3DvHE2hgoZ2rce7fR3dHRserr99xzj9785jfXPJ9FAeAXahbwD3UL+IWaBfxCzQJ+oWaB1vHugT+e7csDAAAAAAAAAAzz7hndAAAAAAAAAACciI1uAAAAAAAAAIDX2OgGAAAAAAAAAHiNjW4AAAAAAAAAgNfY6AYAAAAAAAAAeI2NbgAAAAAAAACA19joBgAAAAAAAAB4jY1uAAAAAAAAAIDX2OgGAAAAAAAAAHiNjW4AAAAAAAAAgNfY6AYAAAAAAAAAeI2NbgAAAAAAAACA19joBgAAAAAAAAB4jY1uAAAAAAAAAIDX2OgGAAAAAAAAAHiNjW4AAAAAAAAAgNfY6AYAAAAAAAAAeI2NbgAAAAAAAACA19joBgAAAAAAAAB4jY1uAAAAAAAAAIDX2OgGAAAAAAAAAHiNjW4AAAAAAAAAgNc6bQcQ1r59+3T77bfr8ccf13PPPafx8XFdffXVTW1jai6nbGFZQX5J6WSX1iQ6NTzQ25Lzo7Ydlc2+25bJLWrm6KKCwpJSyS4N9XUr3dttO6y6HAkKmltYVFBYVirZqYHebq1LJWyHhRiwWfM+zzdxx72zx2Tuua+Qwq1JXBkzYeIwFbOPueC6qIT8AeFQM4gjU+Peu43uhYUFbdmyRW9961v1+te/vunXf3p2QTvHJ/TY5GzptbGRQe3etkkbB/uMnh+17ahs9t226fm8brj/gB49OFN6bevokPZu36z1a5MWI6vtmdkF7Vgl77du26SzHM87/Gaz5n2eb+KOe2ePydxzXyGFW5O4MmbCxGEqZh9zwXVRCfkDwqFmEEcmx713jy656qqr9L73vU/btm1r+rWn5nJliZak/ZOz2jU+oam5nLHzo7Ydlc2+25bJLZZtckvSvoMzuvH+A8rkFi1FVtuRoFD2F0rpJ3nfOT6hI0HBUmRodzZr3uf5Ju64d/aYzD33FVK4NYkrYyZMHKZi9jEXXBeVkD8gHGoGcWR63Hv3G91hHTt2TMeOHSv9OQiCiu/NFpbLEr1i/+SssoXlqm1FOT9q21HZ7LttM0cXyza5V+w7OKOZo4vOPsJkbmGxat7nFha9e4RJmJqFPTZr3uf5pl3VW7fcO3tM5p776h8Tn7Vh1iSujJkwcZiK2cdccN3W82V97Gr+gFZjbQxUZnrce/cb3WHt2bNH6XS69LNhw4aK7w3yS1WvlS1UPx7l/KhtR2Wz77YFNWJzO/bqE0Ct4y4KU7Owx2bN+zzftKt665Z7Z4/J3HNf/WPiszbMmsSVMRMmDlMx+5gLrtt6vqyPXc0f0GqsjYHKTI/7tt/o3rFjhzKZTOnn0KFDFd+bSnZVvVZ/ovrxKOdHbTsqm323LVUjNrdjr/6PMmodd1GYmoU9Nmve5/mmXdVbt9w7e0zmnvvqHxOftWHWJK6MmTBxmIrZx1xw3dbzZX3sav6AVmNtDFRmety3/UZ3T0+PUqnUST+V9Cc6NTYyuOqxsZFB9ddYwEc5P2rbUdnsu21Da7q1dXRo1WNbR4c0tMbNx5ZI0kBfd9W8D/S5G3slYWoW9tiseZ/nm3ZVb91y7+wxmXvuq39MfNaGWZO4MmbCxGEqZh9zwXVbz5f1sav5A1qNtTFQmelx3/Yb3WEMD/Rq97ZNZQlf+ebP4YFeY+dHbTsqm323Ld3brb3bN5dtdm8dHdJt2zc7+3xuSVqXSujWCnm/ddsm757PDX/YrHmf55u4497ZYzL33FdI4dYkroyZMHGYitnHXHBdVEL+gHCoGcSR6XHfUSwWi5Gu0GJHjx7V5OSkJOmiiy7SHXfcocsvv1ynnnqqzjrrrJrnB0GgdDqtTCZT8f+qTc3llC0sK1tYUn+iS/2JzlCJjnJ+1Lajstl32zK5Rc0cXSzFPrSm2+lN7hMdCQqaW1hUUFhWKtGpgb7uttnkrqdmYY/Nmvd5vml3teqWe2ePydxzX/3VzM/aMGsSV8ZMmDhMxexjLriuPa6vj13PH9BqrI2BcqbGvXcb3Q8//LAuv/zystevvfZa3XvvvTXPd31RAOBk1CzgH+oW8As1C/iFmgX8Qs0CrePdA38uu+wyebY3DwAAAAAAAAAwiGd0AwAAAAAAAAC8xkY3AAAAAAAAAMBrbHQDAAAAAAAAALzGRjcAAAAAAAAAwGtsdAMAAAAAAAAAvMZGNwAAAAAAAADAa2x0AwAAAAAAAAC8xkY3AAAAAAAAAMBrbHQDAAAAAAAAALzGRjcAAAAAAAAAwGtsdAMAAAAAAAAAvMZGNwAAAAAAAADAa2x0AwAAAAAAAAC8xkY3AAAAAAAAAMBrbHQDAAAAAAAAALzGRjcAAAAAAAAAwGtsdAMAAAAAAAAAvMZGNwAAAAAAAADAa2x0AwAAAAAAAAC8xkY3AAAAAAAAAMBrbHQDAAAAAAAAALzGRjcAAAAAAAAAwGudtgNo1Ic//GHdfvvtOnz4sLZs2aIPfehDuvjii22HFdnUXE7ZwrKC/JLSyS6tSXRqeKA3Nu0DQL2Yr4DwqBu4hPEYH9zr1iLfgF+oWaB5vNzovu+++3T99dfr7rvv1iWXXKI777xTV155pX7wgx/o9NNPtx1ew56eXdDO8Qk9Njlbem1sZFC7t23SxsG+tm8fAOrFfAWER93AJYzH+OBetxb5BvxCzQLN5eWjS+644w697W1v01ve8hadd955uvvuu9Xb26tPfOITtkNr2NRcrmxyk6T9k7PaNT6hqblcW7cPAPVivgLCo27gEsZjfHCvW4t8A36hZoHm8+43uhcXF/X4449rx44dpddOOeUUveY1r9HXv/71svcfO3ZMx44dK/05CIKWxBlWtrBcNrmt2D85q2xhua3bB1b4UrOwh/nKPdSt+6gbnMh2zTIe44N73Rz11iz5BtxAzQL2ePcb3TMzM3r++ee1bt26k15ft26dDh8+XPb+PXv2KJ1Ol342bNjQqlBDCfJLVY9nC9WP+94+sMKXmoU9zFfuoW7dR93gRLZrlvEYH9zr5qi3Zsk34AZqFrDHu43usHbs2KFMJlP6OXTokO2QVpVKdlU93p+oftz39oEVvtQs7GG+cg916z7qBieyXbOMx/jgXjdHvTVLvgE3ULOAPd5tdA8NDelFL3qRjhw5ctLrR44c0RlnnFH2/p6eHqVSqZN+XNSf6NTYyOCqx8ZGBtWfMPuUGdvtAyt8qVnYw3zlHurWfdQNTmS7ZhmP8cG9bo56a5Z8A26gZgF7vNvo7u7u1ste9jI99NBDpdeOHz+uhx56SJdeeqnFyKIZHujV7m2byia5lW/bHR7obev2AaBezFdAeNQNXMJ4jA/udWuRb8Av1CzQfB3FYrFoO4iw7rvvPl177bX6yEc+oosvvlh33nmnPvvZz+rJJ58se3b3CwVBoHQ6rUwm4+RvnE3N5ZQtLCtbWFJ/okv9ic6WTm622wdeyPWahT3MV+6ibt1F3WA1tmqW8Rgf3OvmqlWz5BtwCzULtI6X/w7iDW94g370ox/ppptu0uHDh3XhhRfqgQceqLnJ7QPbk5nt9gGgXsxXQHjUDVzCeIwP7nVrkW/AL9Qs0DxebnRL0nXXXafrrrvOdhgAAAAAAAAAAMu8e0Y3AAAAAAAAAAAnYqMbAAAAAAAAAOA1bx9d0qiV794MgsByJIDf+vv71dHRYbwdahZojlbVrETdAs1AzQJ+oWYBv1CzgF/qrdnYbXRns1lJ0oYNGyxHAvit0jdGNxs1CzRHq2pWom6BZqBmAb9Qs4BfqFnAL/XWbEdx5X8txcTx48c1PT1d8/8EBEGgDRs26NChQy2b/NoFuWuMb3lr1f8Bp2Zro+/0vZ6+t/K3Vuqp2zjdO/rankz3lZptrXbuXzv3TXKnf9SsO+h7PPsuhes/NYsV5N4eEzUbu9/oPuWUUzQ8PFz3+1OpFAO9QeSuMeTtZNRs/eg7fXdFmLp1MX5T6Gt7aoe+UrP/oZ371859k9q/fyeiZutD3+PZd8m9/lOzfiD39jQz93wZJQAAAAAAAADAa2x0AwAAAAAAAAC8xkZ3BT09Pbr55pvV09NjOxTvkLvGkLdo4pw/+k7ffeR7/GHQ1/YUp75K7d/fdu5fO/dNav/+NSrOeaHv8ey75Hf/fY7dd+TeHhO5j92XUQIAAAAAAAAA2gu/0Q0AAAAAAAAA8Bob3QAAAAAAAAAAr7HRDQAAAAAAAADwGhvdAAAAAAAAAACvsdENAAAAAAAAAPAaG90AAAAAAAAAAK+x0Q0AAAAAAAAA8Bob3QAAAAAAAAAAr7HRDQAAAAAAAADwGhvdAAAAAAAAAACvsdENAAAAAAAAAPAaG90AAAAAAAAAAK+x0Q0AAAAAAAAA8FrsNrqLxaKCIFCxWLQdCoA6ULOAf6hbwC/ULOAXahbwCzULtE7sNrqz2azS6bSy2aztUADUgZoF/EPdAn6hZgG/ULOAX6hZoHVit9ENAAAAAAAAAGgvbHQDAAAAAAAAALzGRjcAAAAAAAAAwGtsdAMAAAAAAAAAvNZpO4B2NDWXU7awrCC/pHSyS2sSnRoe6DV+ru/nHwkKmltYVFBYVirZqYHebq1LJVoWe1S224/C59jjzva9s9m+7b7b5HvffY7fdOzkxh6T8fuemzBc6WuYOEy911S8rmjnvPl4P1wS5/UhfY9v+wDCMVWzVje69+3bp9tvv12PP/64nnvuOY2Pj+vqq6+ues7DDz+s66+/Xt/73ve0YcMGvfvd79ab3/zmlsRbj6dnF7RzfEKPTc6WXhsbGdTubZu0cbDP2Lm+n//M7IJ2rHLurds26awWxB6V7faj8Dn2uLN972y2b7vvNvned5/jNx07ubHHZPy+5yYMV/oaJg5T7zUVryvaOW8+3g+XxHl9SN/j2z6AcEzWrNVHlywsLGjLli368Ic/XNf7n3rqKf3SL/2SLr/8cn33u9/VO9/5Tv32b/+2HnzwQcOR1mdqLld2oyRp/+Ssdo1PaGouZ+Rc388/EhTKNrlXzt05PqEjQcFo7FHZbj8Kn2OPO9v3zmb7tvtuk+999zl+07GTG3tMxu97bsJwpa9h4jD1XlPxuqKd8+bj/XBJnNeH9D2+7QMIx3TNWv2N7quuukpXXXVV3e+/++67dfbZZ+sDH/iAJOmnf/qntX//fv3pn/6prrzyylXPOXbsmI4dO1b6cxAE0YKuIltYLrtRK/ZPzipbWDZyru/nzy0sVj13bmGx6iNMosYele32o3Ax9lbWrM9s3zub7dvuu02u9r3eunU1/nqYjp3c2GMyfldzY+Kz1pW+honD1HtNxeuKds6bq/fDl/VxnNeH9D2+7a/Gl5oFbDBds159GeXXv/51veY1rznptSuvvFJf//rXK56zZ88epdPp0s+GDRuMxRfkl6oezxYqH49yru/nBzUGcc3jEWOPynb7UbgYeytr1me2753N9m333SZX+15v3boafz1Mx05u7DEZv6u5MfFZ60pfw8Rh6r1huJK3MNo5b67eD1/Wx3FeH9L3+La/Gl9qFrDBdM16tdF9+PBhrVu37qTX1q1bpyAIlM/nVz1nx44dymQypZ9Dhw4Ziy+V7Kp6vD9R+XiUc30/P5Wo/g8Lah6PGHtUttuPwsXYW1mzPrN972y2b7vvNrna93rr1tX462E6dnJjj8n4Xc2Nic9aV/oaJg5T7w3DlbyF0c55c/V++LI+jvP6kL7Ht/3V+FKzgA2ma9arje5G9PT0KJVKnfRjSn+iU2Mjg6seGxsZVH+VDdso5/p+/kBfd9VzB/q6jbXdDLbbj8LF2FtZsz6zfe9stm+77za52vd669bV+OthOnZyY4/J+F3NjYnPWlf6GiYOU+81Fa8r2jlvrt4PX9bHcV4f0vf4tr8aX2oWsMF0zXq10X3GGWfoyJEjJ7125MgRpVIpJZNJS1H9h+GBXu3etqnshq18c+jwQK+Rc30/f10qoVsrnHvrtk1Vn8/djNijst1+FD7HHne2753N9m333Sbf++5z/KZjJzf2mIzf99yE4Upfw8Rh6r2m4nVFO+fNx/vhkjivD+l7fNsHEI7pmu0oFovFSFdoko6ODo2Pj+vqq6+u+J4bbrhBf/M3f6OJiYnSa7/xG7+hH//4x3rggQfqaicIAqXTaWUyGWP/V21qLqdsYVnZwpL6E13qT3TWfaOinOv7+UeCguYWFhUUlpVKdGqgr7vmJnczY4/KdvtRuBx7K2rWZ7bvnc32bffdJtf7XqtuXY+/GtOxkxt7TMbvem6a+VnrSl/DxGHqvabidUU75831++H6+jjO60P6Ht/2q3G9ZgEbTNWs1Y3uo0ePanJyUpJ00UUX6Y477tDll1+uU089VWeddZZ27NihZ599Vp/61KckSU899ZQuuOACvf3tb9db3/pW/cM//IPe8Y536Mtf/rKuvPLKutpkggH8Qs0C/qFuAb9Qs4BfqFnAL9Qs0DpWH13y7W9/WxdddJEuuugiSdL111+viy66SDfddJMk6bnnntMzzzxTev/ZZ5+tL3/5y/q7v/s7bdmyRR/4wAf0v/7X/6p7kxsAAAAAAAAA0H6sfrvJZZddpmq/UH7vvfeues53vvMdg1EBAAAAAAAAAHzi1ZdRAgAAAAAAAADwQmx0AwAAAAAAAAC8xkY3AAAAAAAAAMBrbHQDAAAAAAAAALzGRjcAAAAAAAAAwGtsdAMAAAAAAAAAvMZGNwAAAAAAAADAa2x0AwAAAAAAAAC8xkY3AAAAAAAAAMBrbHQDAAAAAAAAALzGRjcAAAAAAAAAwGtsdAMAAAAAAAAAvMZGNwAAAAAAAADAa2x0AwAAAAAAAAC8xkY3AAAAAAAAAMBrbHQDAAAAAAAAALzGRjcAAAAAAAAAwGtsdAMAAAAAAAAAvMZGNwAAAAAAAADAa2x0AwAAAAAAAAC8xkY3AAAAAAAAAMBrbHQDAAAAAAAAALzGRjcAAAAAAAAAwGtsdAMAAAAAAAAAvMZGNwAAAAAAAADAa2x0AwAAAAAAAAC8xkY3AAAAAAAAAMBrbHQDAAAAAAAAALxmfaP7wx/+sF7ykpcokUjokksu0Te/+c2q77/zzjt17rnnKplMasOGDfqDP/gDFQqFFkULAAAAAAAAAHCN1Y3u++67T9dff71uvvlm/dM//ZO2bNmiK6+8Uv/+7/++6vs//elP68Ybb9TNN9+s73//+/r4xz+u++67Tzt37mxx5AAAAAAAAAAAV1jd6L7jjjv0tre9TW95y1t03nnn6e6771Zvb68+8YlPrPr+r33ta/9/e3ceV1W1/3/8fZgdADUFlFAccJ41Cc2rJopWXu1208yccrqOGA3GzaEyQxu8Nlh2+6Y2aJndym6DphbkgEOamkampmkqOItDgsH+/dHPcz0xHuCw2ZzX8/Hg8fDsvdden7UPH9byw2YfderUSffee6/Cw8PVs2dPDRw4sMC7wAEAAAAAAAAA5ZeXWR1nZmZq27Ztio+Pt2/z8PBQdHS0kpOTc23TsWNHvfPOO9qyZYs6dOign3/+WZ9//rkGDx6cZz8ZGRnKyMiwv05PTy+5QQAoceQsYD3kLWAt5CxgLeQsYC3kLGAe0+7oPnXqlLKyshQcHOywPTg4WKmpqbm2uffee/Xkk0/qlltukbe3t+rXr6+uXbvm++iShIQEBQYG2r/CwsJKdBwAShY5C1gPeQtYCzkLWAs5C1gLOQuYx2YYhmFGx8eOHVNoaKg2btyoqKgo+/ZHHnlESUlJ2rx5c442iYmJuueee/TUU08pMjJS+/fvV2xsrEaNGqVp06bl2k9uv0kLCwvT+fPnFRAQUPIDA1As5CxgPeQtYC3kLGAt5CxgLeQsYB7THl1SvXp1eXp6Ki0tzWF7WlqaQkJCcm0zbdo0DR48WCNHjpQktWjRQpcuXdLo0aP12GOPycMj5w3qvr6+8vX1LfkBAHAJchawHvIWsBZyFrAWchawFnIWMI9pjy7x8fFRu3bttHbtWvu27OxsrV271uEO7+tdvnw5RzHb09NTkmTSjekAAAAAAAAAAJOZdke3JMXFxWno0KFq3769OnTooHnz5unSpUsaPny4JGnIkCEKDQ1VQkKCJKlPnz6aO3eu2rRpY390ybRp09SnTx97wRsAAAAAAAAA4F5MLXQPGDBAJ0+e1PTp05WamqrWrVtr5cqV9g+oPHz4sMMd3FOnTpXNZtPUqVN19OhR1ahRQ3369NGsWbPMGgIAAAAAAAAAwGSmfRilWdLT0xUYGMiHAAAWQc4C1kPeAtZCzgLWQs4C1kLOAqXHtGd0AwAAAAAAAABQEih0AwAAAAAAAAAsjUI3AAAAAAAAAMDSKHQDAAAAAAAAACyNQjcAAAAAAAAAwNIodAMAAAAAAAAALI1CNwAAAAAAAADA0ih0AwAAAAAAAAAsjUI3AAAAAAAAAMDSKHQDAAAAAAAAACyNQjcAAAAAAAAAwNIodAMAAAAAAAAALI1CNwAAAAAAAADA0ih0AwAAAAAAAAAsjUI3AAAAAAAAAMDSKHQDAAAAAAAAACyNQjcAAAAAAAAAwNIodAMAAAAAAAAALI1CNwAAAAAAAADA0ih0AwAAAAAAAAAsjUI3AAAAAAAAAMDSKHQDAAAAAAAAACyNQjcAAAAAAAAAwNIodAMAAAAAAAAALI1CNwAAAAAAAADA0ih0AwAAAAAAAAAsjUI3AAAAAAAAAMDSKHQDAAAAAAAAACyNQjcAAAAAAAAAwNJML3TPnz9f4eHh8vPzU2RkpLZs2ZLv8efOndP48eNVs2ZN+fr6qmHDhvr8889LKVoAAAAAAAAAQFnjZWbny5YtU1xcnBYsWKDIyEjNmzdPMTEx2rt3r4KCgnIcn5mZqR49eigoKEgffPCBQkND9csvv6hKlSqlHzwAAAAAAAAAoEwwtdA9d+5cjRo1SsOHD5ckLViwQJ999pkWLlyoRx99NMfxCxcu1JkzZ7Rx40Z5e3tLksLDw/PtIyMjQxkZGfbX6enpJTcAACWOnAWsh7wFrIWcBayFnAWshZwFzGPao0syMzO1bds2RUdH/y8YDw9FR0crOTk51zaffPKJoqKiNH78eAUHB6t58+Z6+umnlZWVlWc/CQkJCgwMtH+FhYWV+FgAlBxyFrAe8hawFnIWsBZyFrAWchYwj80wDMOMjo8dO6bQ0FBt3LhRUVFR9u2PPPKIkpKStHnz5hxtGjdurEOHDmnQoEEaN26c9u/fr3HjxmnSpEmaMWNGrv3k9pu0sLAwnT9/XgEBASU/MADFQs4C1kPeAtZCzgLWQs4C1kLOAuYx9dElzsrOzlZQUJD+/e9/y9PTU+3atdPRo0f17LPP5lno9vX1la+vbylHCqCoyFnAeshbwFrIWcBayFnAWshZwDymFbqrV68uT09PpaWlOWxPS0tTSEhIrm1q1qwpb29veXp62rc1adJEqampyszMlI+Pj0tjBgAAAAAAAACUPU4/o/v333/XW2+9laNA7SwfHx+1a9dOa9eutW/Lzs7W2rVrHR5lcr1OnTpp//79ys7Otm/76aefVLNmTYrcAAAAAAAAAOCmnC50e3l56R//+IeuXLlS7M7j4uL0+uuv680331RKSorGjh2rS5cuafjw4ZKkIUOGKD4+3n782LFjdebMGcXGxuqnn37SZ599pqefflrjx48vdiwAAAAAAAAAAGsq0qNLOnTooB07dqhOnTrF6nzAgAE6efKkpk+frtTUVLVu3VorV65UcHCwJOnw4cPy8PhfLT4sLEyrVq3SAw88oJYtWyo0NFSxsbGaMmVKseIAAAAAAAAAAFhXkQrd48aNU1xcnI4cOaJ27dqpUqVKDvtbtmxZ6HNNmDBBEyZMyHVfYmJijm1RUVHatGmTU/ECAAAAAAAAAMqvIhW677nnHknSpEmT7NtsNpsMw5DNZlNWVlbJRAcAAAAAAAAAQAGKVOg+ePBgSccBAAAAAAAAAECRFKnQXdxncwMAAAAAAAAAUFKKVOiWpAMHDmjevHlKSUmRJDVt2lSxsbGqX79+iQUHAAAAAAAAAEBBPIrSaNWqVWratKm2bNmili1bqmXLltq8ebOaNWum1atXl3SMAAAAAAAAAADkqUh3dD/66KN64IEHNHv27Bzbp0yZoh49epRIcAAAAAAAAAAAFKRId3SnpKRoxIgRObbff//9+uGHH4odFAAAAAAAAAAAhVWkQneNGjW0Y8eOHNt37NihoKCg4sYEAAAAAAAAAEChFenRJaNGjdLo0aP1888/q2PHjpKkDRs2aM6cOYqLiyvRAAEAAAAAAAAAyE+RCt3Tpk2Tv7+/nn/+ecXHx0uSatWqpccff1yTJk0q0QABAAAAAAAAAMhPkQrdNptNDzzwgB544AFduHBBkuTv71+igQEAAAAAAAAAUBhFKnRfjwI3AAAAAAAAAMBMhS50t2nTRjabrVDHbt++vcgBAQAAAAAAAADgjEIXuvv16+fCMAAAAAAAAAAAKJpCF7pnzJjhyjgAAAAAAAAAACiSYj2je9u2bUpJSZEkNWvWTG3atCmRoAAAAAAAAAAAKKwiFbpPnDihe+65R4mJiapSpYok6dy5c+rWrZvee+891ahRoyRjBAAAAAAAAAAgTx5FaTRx4kRduHBBe/bs0ZkzZ3TmzBnt3r1b6enpmjRpUknHCAAAAAAAAABAnop0R/fKlSu1Zs0aNWnSxL6tadOmmj9/vnr27FliwQEAAAAAAAAAUJAi3dGdnZ0tb2/vHNu9vb2VnZ1d7KAAAAAAAAAAACisIhW6b731VsXGxurYsWP2bUePHtUDDzyg7t27l1hwAAAAAAAAAAAUpEiF7pdfflnp6ekKDw9X/fr1Vb9+fdWtW1fp6el66aWXSjpGAAAAAAAAAADyVKRndIeFhWn79u1as2aNfvzxR0lSkyZNFB0dXaLBAQAAAAAAAABQEKfu6P7qq6/UtGlTpaeny2azqUePHpo4caImTpyom266Sc2aNdO6detcFSsAAAAAAAAAADk4VeieN2+eRo0apYCAgBz7AgMDNWbMGM2dO7fEggMAAAAAAAAAoCBOFbp37typXr165bm/Z8+e2rZtW7GDAgAAAAAAAACgsJwqdKelpcnb2zvP/V5eXjp58mSxgwIAAAAAAAAAoLCcKnSHhoZq9+7dee7ftWuXatasWeygAAAAAAAAAAAoLKcK3bfddpumTZumK1eu5Nj322+/acaMGbrjjjucDmL+/PkKDw+Xn5+fIiMjtWXLlkK1e++992Sz2dSvXz+n+wQAAAAAAAAAlA9ezhw8depUffjhh2rYsKEmTJigRo0aSZJ+/PFHzZ8/X1lZWXrsscecCmDZsmWKi4vTggULFBkZqXnz5ikmJkZ79+5VUFBQnu0OHTqkhx56SJ07d3aqPwAAAAAAAABA+eLUHd3BwcHauHGjmjdvrvj4eN15552688479c9//lPNmzfX+vXrFRwc7FQAc+fO1ahRozR8+HA1bdpUCxYsUMWKFbVw4cI822RlZWnQoEF64oknVK9ePaf6AwAAAAAAAACUL07d0S1JderU0eeff66zZ89q//79MgxDERERqlq1qtOdZ2Zmatu2bYqPj7dv8/DwUHR0tJKTk/Ns9+STTyooKEgjRozQunXr8u0jIyNDGRkZ9tfp6elOxwmg9JCzgPWQt4C1kLOAtZCzgLWQs4B5nLqj+3pVq1bVTTfdpA4dOhSpyC1Jp06dUlZWVo67wIODg5Wampprm/Xr1+uNN97Q66+/Xqg+EhISFBgYaP8KCwsrUqwASgc5C1gPeQtYCzkLWAs5C1gLOQuYx2YYhmFW58eOHVNoaKg2btyoqKgo+/ZHHnlESUlJ2rx5s8PxFy5cUMuWLfXKK6+od+/ekqRhw4bp3Llz+vjjj3PtI7ffpIWFhen8+fMKCAgo+UEBKBZyFrAe8hawFnIWsBZyFrAWchYwj9OPLilJ1atXl6enp9LS0hy2p6WlKSQkJMfxBw4c0KFDh9SnTx/7tuzsbEmSl5eX9u7dq/r16zu08fX1la+vrwuiB+AK5CxgPeQtYC3kLGAt5CxgLeQsYJ4iP7qkJPj4+Khdu3Zau3atfVt2drbWrl3rcIf3NY0bN9b333+vHTt22L/++te/qlu3btqxYwd/DgIAAAAAAAAAbsjUO7olKS4uTkOHDlX79u3VoUMHzZs3T5cuXdLw4cMlSUOGDFFoaKgSEhLk5+en5s2bO7SvUqWKJOXYDgAAAAAAAABwD6YXugcMGKCTJ09q+vTpSk1NVevWrbVy5Ur7B1QePnxYHh6m3ngOAAAAAAAAACjDTP0wSjOkp6crMDCQDwEALIKcBayHvAWshZwFrIWcBayFnAVKD7dKAwAAAAAAAAAsjUI3AAAAAAAAAMDSKHQDAAAAAAAAACyNQjcAAAAAAAAAwNIodAMAAAAAAAAALI1CNwAAAAAAAADA0ih0AwAAAAAAAAAsjUI3AAAAAAAAAMDSKHQDAAAAAAAAACyNQjcAAAAAAAAAwNIodAMAAAAAAAAALI1CNwAAAAAAAADA0ih0AwAAAAAAAAAsjUI3AAAAAAAAAMDSKHQDAAAAAAAAACyNQjcAAAAAAAAAwNIodAMAAAAAAAAALI1CNwAAAAAAAADA0ih0AwAAAAAAAAAsjUI3AAAAAAAAAMDSKHQDAAAAAAAAACyNQjcAAAAAAAAAwNIodAMAAAAAAAAALI1CNwAAAAAAAADA0ih0AwAAAAAAAAAsjUI3AAAAAAAAAMDSKHQDAAAAAAAAACyNQjcAAAAAAAAAwNLKRKF7/vz5Cg8Pl5+fnyIjI7Vly5Y8j3399dfVuXNnVa1aVVWrVlV0dHS+xwMAAAAAAAAAyjfTC93Lli1TXFycZsyYoe3bt6tVq1aKiYnRiRMncj0+MTFRAwcO1Ndff63k5GSFhYWpZ8+eOnr0aClHDgAAAAAAAAAoC0wvdM+dO1ejRo3S8OHD1bRpUy1YsEAVK1bUwoULcz1+yZIlGjdunFq3bq3GjRvr//7v/5Sdna21a9eWcuQAAAAAAAAAgLLAy8zOMzMztW3bNsXHx9u3eXh4KDo6WsnJyYU6x+XLl3X16lVVq1Yt1/0ZGRnKyMiwv05PTy9e0ABcipwFrIe8BayFnAWshZwFrIWcBcxj6h3dp06dUlZWloKDgx22BwcHKzU1tVDnmDJlimrVqqXo6Ohc9yckJCgwMND+FRYWVuy4AbgOOQtYD3kLWAs5C1gLOQtYCzkLmMdmGIZhVufHjh1TaGioNm7cqKioKPv2Rx55RElJSdq8eXO+7WfPnq1nnnlGiYmJatmyZa7H5PabtLCwMJ0/f14BAQElMxAAJYacBayHvAWshZwFrIWcBayFnAXMY+qjS6pXry5PT0+lpaU5bE9LS1NISEi+bZ977jnNnj1ba9asybPILUm+vr7y9fUtkXgBuB45C1gPeQtYCzkLWAs5C1gLOQuYx9RHl/j4+Khdu3YOHyR57YMlr7/D+8+eeeYZzZw5UytXrlT79u1LI1QAAAAAAAAAQBll6h3dkhQXF6ehQ4eqffv26tChg+bNm6dLly5p+PDhkqQhQ4YoNDRUCQkJkqQ5c+Zo+vTpWrp0qcLDw+3P8q5cubIqV65s2jgAAAAAAAAAAOYwvdA9YMAAnTx5UtOnT1dqaqpat26tlStX2j+g8vDhw/Lw+N+N56+++qoyMzP197//3eE8M2bM0OOPP16aoQMAAAAAAAAAygDTC92SNGHCBE2YMCHXfYmJiQ6vDx065PqAAAAAAAAAAACWYeozugEAAAAAAAAAKC4K3QAAAAAAAAAAS6PQDQAAAAAAAACwNArdAAAAAAAAAABLo9ANAAAAAAAAALA0Ct0AAAAAAAAAAEuj0A0AAAAAAAAAsDQK3QAAAAAAAAAAS6PQDQAAAAAAAACwNArdAAAAAAAAAABLo9ANAAAAAAAAALA0Ct0AAAAAAAAAAEuj0A0AAAAAAAAAsDQK3QAAAAAAAAAAS6PQDQAAAAAAAACwNArdAAAAAAAAAABLo9ANAAAAAAAAALA0Ct0AAAAAAAAAAEuj0A0AAAAAAAAAsDQK3QAAAAAAAAAAS6PQDQAAAAAAAACwNArdAAAAAAAAAABLo9ANAAAAAAAAALA0Ct0AAAAAAAAAAEuj0A0AAAAAAAAAsDQK3QAAAAAAAAAAS6PQDQAAAAAAAACwNArdAAAAAAAAAABLo9ANAAAAAAAAALA0L7MDkKT58+fr2WefVWpqqlq1aqWXXnpJHTp0yPP45cuXa9q0aTp06JAiIiI0Z84c3XbbbSUWz69nL+vCld+V/ttVBVbwVmU/L91YtWKptDezb7Pbmx17WvoVnb2UqfQrvyuggpeqVvRRcIBfqfRv9tiL295sZsZv9rVz5/7NHvv5y5k6dTFT6VeuKqCCt6pX8lFgRZ9S6dvssReXq+N35fmtHHtpnN+VrHxtrHzdJeno2ctKvy5+fz8vheYRvzNjdfa6uOrcHFu24nBmfi0L8ZZFZsfvzutDxu6+/ReHlWMHyhrTC93Lli1TXFycFixYoMjISM2bN08xMTHau3evgoKCchy/ceNGDRw4UAkJCbrjjju0dOlS9evXT9u3b1fz5s2LHc8vpy/pnx99rw37T9u33dLgBs26s4Xq3FDJpe3N7Nvs9mbHfvj0JcXn0v7pO1uodjkfe3Hbm83M+M2+du7cv9ljP3buN035zy6t23fKvu0vEdU1+66WqlWlgkv7NnvsxeXq+F15fivHXhrndyUrXxsrX3fJufhddWxZiaM8H1tW4nBmfi0L8ZZFZsfvzutDxu6+/ReHlWMHyiLTH10yd+5cjRo1SsOHD1fTpk21YMECVaxYUQsXLsz1+BdeeEG9evXSww8/rCZNmmjmzJlq27atXn755WLH8uvZyzl+wEjS+v2n9dhH3+vXs5dd1t7Mvs1ub3bsaelXchS5r7X/50ffKy39isv6N3vsxW1vNjPjN/vauXP/Zo/9/OXMHP8Jl6Rv9p3So//ZpfOXM13Wt9ljLy5Xx+/K81s59tI4vytZ+dpY+bpLf9zJnV/8R6+L35mxOntdXHVujlWRjnfVsc7Mr2Uh3rLI7PjdeX3I2N23/+KwcuxAWWXqHd2ZmZnatm2b4uPj7ds8PDwUHR2t5OTkXNskJycrLi7OYVtMTIw+/vjjXI/PyMhQRkaG/XV6enqe8Vy48nuOHzDXrN9/Wheu/J5n2+K2N7Nvs9ubHfvZS5n5tj97KTPfR5hYeezFbe8KpZmzxWH2tXPn/s0e+6mLmTn+E37NN/tO6dTFTJc9wsTsseelsHnr6vhdeX4rx14a53clK1+bsnrdC5uz6QXEn37ld4X+/9fOjNXZ6+Kqc3OsinS8q451Zn4tC/GWprIyzxbEndeHjN19+8+NVXIWKI9MvaP71KlTysrKUnBwsMP24OBgpaam5tomNTXVqeMTEhIUGBho/woLC8sznvTfruYb74Ur+e8vTnsz+za7vemxFzB5FLjfymMvZntXKM2cLQ6zr50792/62As4f3kee14Km7eujt+V57dy7KVxfley8rUpq9fdFTnrqmPLShzl+diyEocz82tZiLc0lZV5tiBuvT5k7G7bf26skrNAeWT6o0tcLT4+XufPn7d/HTlyJM9jAyp453suf7/89xenvZl9m93e9Nj98v/DhgL3W3nsxWzvCqWZs8Vh9rVz5/5NH3sB5y/PY89LYfPW1fG78vxWjr00zu9KVr42ZfW6uyJnXXVsWYmjPB9bVuJwZn4tC/GWprIyzxbErdeHjN1t+8+NVXIWKI9MLXRXr15dnp6eSktLc9ielpamkJCQXNuEhIQ4dbyvr68CAgIcvvLi7+elWxrckOu+WxrcIP8CCp7FaW9m32a3Nzv2qpV88m1ftVL+jyCw8tiL294VSjNni8Psa+fO/Zs99uqVffSXiOq57vtLRHVVr+yax5ZI5o89L4XNW1fH78rzWzn20ji/K1n52pTV617YnA0oIP7rbwZwZqzOXhdXnZtjVaTjXXWsM/NrWYi3NJWVebYg7rw+ZOzu239urJKzQHlkaqHbx8dH7dq109q1a+3bsrOztXbtWkVFReXaJioqyuF4SVq9enWexzvjxqoVNevOFjl+0Fz7xNsbq1Z0WXsz+za7vdmxBwf46ek82j99Z4t8n89d3P7NHntx25vNzPjNvnbu3L/ZYw+s6KPZd7XM8Z/xv0RU15y7Wrrs+dyS+WMvLlfH78rzWzn20ji/K1n52lj5uktSaAHxh14XvzNjdfa6uOrcHKsiHe+qY52ZX8tCvGWR2fG78/qQsbtv/8Vh5diBsspmGIZhZgDLli3T0KFD9dprr6lDhw6aN2+e3n//ff34448KDg7WkCFDFBoaqoSEBEnSxo0b1aVLF82ePVu333673nvvPT399NPavn27mjdvXmB/6enpCgwM1Pnz5/P8rdqvZy/rwpXfdeHKVfn7ecvfz8upHzDFaW9m32a3Nzv2tPQrOnspU+lXfleAn5eqVvIpsMhdUv2bPfbitnel0sjZ4jD72rlz/2aP/fzlTJ26mGnvv3plH5cWua9n9tgLUlDeujp+V57fyrGXxvldycrXpqxf94Jy9ujZy0q/Lv4APy+HIvf1nBmrs9fFVefm2LIVhzPza1mI1wxmz7MFcef1IWN33/7zU9ZzFihPTC90S9LLL7+sZ599VqmpqWrdurVefPFFRUZGSpK6du2q8PBwLV682H788uXLNXXqVB06dEgRERF65plndNtttxWqr8IUzQCUHeQsYD3kLWAt5CxgLeQsYC3kLFB6ykShuzTxAwawFnIWsB7yFrAWchawFnIWsBZyFig9pj6jGwAAAAAAAACA4qLQDQAAAAAAAACwNC+zAyht157Ukp6ebnIkgLX5+/vLZrO5vB9yFigZpZWzEnkLlARyFrAWchawFnIWsJbC5qzbFbovXLggSQoLCzM5EsDaSuv5YuQsUDJK85mA5C1QfOQsYC3kLGAt5CxgLYXNWbf7MMrs7GwdO3aswN8EpKenKywsTEeOHOHDApzEtSsaq1230voNODlbMMbO2Asz9tK8a6UweetO7x1jLZ9cPVZytnSV5/GV57FJZWd85GzZwdjdc+ySc+MnZ3EN1948rshZt7uj28PDQzfeeGOhjw8ICOAbvYi4dkXDdXNEzhYeY2fsZYUzeVsW43cVxlo+lYexkrP/U57HV57HJpX/8V2PnC0cxu6eY5fK3vjJWWvg2punJK89H0YJAAAAAAAAALA0Ct0AAAAAAAAAAEuj0J0HX19fzZgxQ76+vmaHYjlcu6LhuhWPO18/xs7Yrcjq8TuDsZZP7jRWqfyPtzyPrzyPTSr/4ysqd74ujN09xy5Ze/xWjt3quPbmccW1d7sPowQAAAAAAAAAlC/c0Q0AAAAAAAAAsDQK3QAAAAAAAAAAS6PQDQAAAAAAAACwNArdAAAAAAAAAABLo9Cdi/nz5ys8PFx+fn6KjIzUli1bzA6pzHv88cdls9kcvho3bmx2WGXSN998oz59+qhWrVqy2Wz6+OOPHfYbhqHp06erZs2aqlChgqKjo7Vv3z5zgrUId83ZhIQE3XTTTfL391dQUJD69eunvXv3mh1WqZs9e7ZsNpsmT55sdiil5ujRo7rvvvt0ww03qEKFCmrRooW+/fZbs8PKwdncXL58uRo3biw/Pz+1aNFCn3/+eSlFWnRFycPFixfnmDP9/PxKKeKiK8pcb8X39Jrw8PAc47XZbBo/fnyux1v1fS2s8jjXlrf1a3lfYxY0vmHDhuV4P3v16mVOsGVAeczZgrA2/h93Wx+zNkZBnLn25X1NV1oKmrdzk5iYqLZt28rX11cNGjTQ4sWLne6XQvefLFu2THFxcZoxY4a2b9+uVq1aKSYmRidOnDA7tDKvWbNmOn78uP1r/fr1ZodUJl26dEmtWrXS/Pnzc93/zDPP6MUXX9SCBQu0efNmVapUSTExMbpy5UopR2oN7pyzSUlJGj9+vDZt2qTVq1fr6tWr6tmzpy5dumR2aKVm69ateu2119SyZUuzQyk1Z8+eVadOneTt7a0vvvhCP/zwg55//nlVrVrV7NAcOJubGzdu1MCBAzVixAh999136tevn/r166fdu3eXcuTOKWoeBgQEOMyZv/zySylFXDzOzPVWfU+v2bp1q8NYV69eLUm6++6782xj1fe1IOV5ri1P69fyvsYsaHyS1KtXL4f389133y3FCMuO8pyz+WFt/Ad3Wx+zNkZBivIzsbyu6UpTYebt6x08eFC33367unXrph07dmjy5MkaOXKkVq1a5VzHBhx06NDBGD9+vP11VlaWUatWLSMhIcHEqMq+GTNmGK1atTI7DMuRZHz00Uf219nZ2UZISIjx7LPP2redO3fO8PX1Nd59910TIiz7yNn/OXHihCHJSEpKMjuUUnHhwgUjIiLCWL16tdGlSxcjNjbW7JBKxZQpU4xbbrnF7DAK5Gxu9u/f37j99tsdtkVGRhpjxoxxaZwlrTB5uGjRIiMwMLD0giohzs715eU9vSY2NtaoX7++kZ2dnet+q76vhVFe59ryvH4t72vMP4/PMAxj6NChRt++fU2Jp6wprznrLHdbGxuGe66PWRujIM5e+/K8pjNLbvP2nz3yyCNGs2bNHLYNGDDAiImJcaov7ui+TmZmprZt26bo6Gj7Ng8PD0VHRys5OdnEyKxh3759qlWrlurVq6dBgwbp8OHDZodkOQcPHlRqaqrD92BgYKAiIyP5HswFOevo/PnzkqRq1aqZHEnpGD9+vG6//XaH998dfPLJJ2rfvr3uvvtuBQUFqU2bNnr99dfNDstBUXIzOTk5x3sZExNjuVwubB5evHhRderUUVhYmPr27as9e/aURnjF5sxcX17eU+mP7+l33nlH999/v2w2W57HWfV9zU95n2vdZf3qLmvMxMREBQUFqVGjRho7dqxOnz5tdkilrrznrDPcbW0suef6mLUx8lPUn4nlcU1X1pXU9zyF7uucOnVKWVlZCg4OdtgeHBys1NRUk6KyhsjISC1evFgrV67Uq6++qoMHD6pz5866cOGC2aFZyrXvM74HC4ec/Z/s7GxNnjxZnTp1UvPmzc0Ox+Xee+89bd++XQkJCWaHUup+/vlnvfrqq4qIiNCqVas0duxYTZo0SW+++abZodkVJTdTU1Mtn8uFzcNGjRpp4cKFWrFihd555x1lZ2erY8eO+vXXX0sxWuc5O9eXh/f0mo8//ljnzp3TsGHD8jzGqu9rQcrzXOtO61d3WGP26tVLb731ltauXas5c+YoKSlJvXv3VlZWltmhlarynLPOcLe1seS+62PWxshPUa59eV3TlXV5fc+np6frt99+K/R5vEo6MLin3r172//dsmVLRUZGqk6dOnr//fc1YsQIEyMD3MP48eO1e/duSz9btLCOHDmi2NhYrV692i0/FCQ7O1vt27fX008/LUlq06aNdu/erQULFmjo0KEmR+feCpuHUVFRioqKsr/u2LGjmjRpotdee00zZ850dZhF5s5z/RtvvKHevXurVq1aeR5j1ffVnbnz93R5dM8999j/3aJFC7Vs2VL169dXYmKiunfvbmJkMIM7rY0l914fszZGSWNNZ23c0X2d6tWry9PTU2lpaQ7b09LSFBISYlJU1lSlShU1bNhQ+/fvNzsUS7n2fcb3YOGQs3+YMGGCPv30U3399de68cYbzQ7H5bZt26YTJ06obdu28vLykpeXl5KSkvTiiy/Ky8ur3N+5VbNmTTVt2tRhW5MmTcrUn9sXJTdDQkIsncvFyUNvb2+1adPGcnNmQXO91d/Ta3755RetWbNGI0eOdKqdVd/XP3OnubY8r1/dcY1Zr149Va9evVy+n/lxp5zNi7utjSX3Xh+zNkZ+SuJnYnlZ05V1eX3PBwQEqEKFCoU+D4Xu6/j4+Khdu3Zau3atfVt2drbWrl3r8NscFOzixYs6cOCAatasaXYollK3bl2FhIQ4fA+mp6dr8+bNfA/mwt1z1jAMTZgwQR999JG++uor1a1b1+yQSkX37t31/fffa8eOHfav9u3ba9CgQdqxY4c8PT3NDtGlOnXqpL179zps++mnn1SnTh2TIsqpKLkZFRXlcLwkrV69uszncknkYVZWlr7//nvLzZkFzfVWfU//bNGiRQoKCtLtt9/uVDurvq9/5k5zbXlev7rjGvPXX3/V6dOny+X7mR93ytk/c9e1seTe62PWxshPSfxMLC9rurKuxL7nnfroSjfw3nvvGb6+vsbixYuNH374wRg9erRRpUoVIzU11ezQyrQHH3zQSExMNA4ePGhs2LDBiI6ONqpXr26cOHHC7NDKnAsXLhjfffed8d133xmSjLlz5xrfffed8csvvxiGYRizZ882qlSpYqxYscLYtWuX0bdvX6Nu3brGb7/9ZnLkZZM75+zYsWONwMBAIzEx0Th+/Lj96/Lly2aHVurc5VPlDcMwtmzZYnh5eRmzZs0y9u3bZyxZssSoWLGi8c4775gdmoOCcnPw4MHGo48+aj9+w4YNhpeXl/Hcc88ZKSkpxowZMwxvb2/j+++/N2sIhVKYPPzzWJ944glj1apVxoEDB4xt27YZ99xzj+Hn52fs2bPHjCEUWkFzfXl5T6+XlZVl1K5d25gyZUqOfeXlfS2M8jrXlrf1a3lfY+Y3vgsXLhgPPfSQkZycbBw8eNBYs2aN0bZtWyMiIsK4cuWK2aGXuvKaswVhbezIXdbHrI1REGevfXle05WmgtYljz76qDF48GD78T///LNRsWJF4+GHHzZSUlKM+fPnG56ensbKlSud6pdCdy5eeuklo3bt2oaPj4/RoUMHY9OmTWaHVOYNGDDAqFmzpuHj42OEhoYaAwYMMPbv3292WGXS119/bUjK8TV06FDDMAwjOzvbmDZtmhEcHGz4+voa3bt3N/bu3Wtu0GWcu+Zsbt9HkoxFixaZHVqpc5eF/DX//e9/jebNmxu+vr5G48aNjX//+99mh5Sr/HKzS5cu9p9717z//vtGw4YNDR8fH6NZs2bGZ599VsoRO68wefjnsU6ePNl+XYKDg43bbrvN2L59e+kH76SC5vry8p5eb9WqVYakXOfh8vK+FlZ5nGvL2/q1vK8x8xvf5cuXjZ49exo1atQwvL29jTp16hijRo0q94Xd/JTHnC0Ia2NH7rQ+Zm2Mgjhz7cv7mq60FLQuGTp0qNGlS5ccbVq3bm34+PgY9erVK9LPb5thGIZz94ADAAAAAAAAAFB28IxuAAAAAAAAAIClUegGAAAAAAAAAFgahW4AAAAAAAAAgKVR6AYAAAAAAAAAWBqFbgAAAAAAAACApVHoBgAAAAAAAABYGoVuAAAAAAAAAIClUegGAAAAAAAAAFgahW44xWaz6eOPPzY7DAAm6tq1qyZPnmx2GACKgHkcsIZDhw7JZrNpx44dhW6zePFiValSxWUxAXCtouQ9gJLz+OOPq3Xr1maHgWKi0A271NRUTZw4UfXq1ZOvr6/CwsLUp08frV271n7M8ePH1bt3b0klOxGHh4fLZrNp06ZNDtsnT56srl27Fvv8gLsZNmyYbDabbDabfHx81KBBAz355JP6/fffzQ4NQAH69OmjXr165bpv3bp1stls2rVrV5HOff08XhjDhg1Tv379itQXAOnIkSO6//77VatWLfn4+KhOnTqKjY3V6dOn820XFham48ePq3nz5oXua8CAAfrpp5+KGzJQbvx5DjP7Zo2DBw/q3nvvVa1ateTn56cbb7xRffv21Y8//iipaHkP4H8KU9NC+edldgAoGw4dOqROnTqpSpUqevbZZ9WiRQtdvXpVq1at0vjx4+2Tb0hIiMti8PPz05QpU5SUlOSyPgB30qtXLy1atEgZGRn6/PPPNX78eHl7eys+Pt7s0ADkY8SIEbrrrrv066+/6sYbb3TYt2jRIrVv314tW7Z06pyZmZny8fFx6TwOwNHPP/+sqKgoNWzYUO+++67q1q2rPXv26OGHH9YXX3yhTZs2qVq1ajnaFTVfK1SooAoVKpRU+ABK0NWrV9WjRw81atRIH374oWrWrKlff/1VX3zxhc6dOydJ8vT0ZJ4GiqiwNS1Xu3r1qry9vUulL+SOO7ohSRo3bpxsNpu2bNmiu+66Sw0bNlSzZs0UFxfncJf19X/yXLduXUlSmzZtZLPZ1LVrV33zzTfy9vZWamqqw/knT56szp075xvD6NGjtWnTJn3++ed5HrN161b16NFD1atXV2BgoLp06aLt27c7HGOz2fTaa6/pjjvuUMWKFdWkSRMlJydr//796tq1qypVqqSOHTvqwIEDDu1WrFihtm3bys/PT/Xq1dMTTzzB3a+wNF9fX4WEhKhOnToaO3asoqOj9cknn2ju3Llq0aKFKlWqpLCwMI0bN04XL150aLthwwZ17dpVFStWVNWqVRUTE6OzZ8/m2s9nn32mwMBALVmyRJL09ttvq3379vL391dISIjuvfdenThxwqHNJ598ooiICPn5+albt2568803ZbPZ7At9SVq/fr06d+6sChUqKCwsTJMmTdKlS5dK9iIBZdAdd9yhGjVqaPHixQ7bL168qOXLl6tfv34aOHCgQkNDVbFiRbVo0ULvvvuuw7Fdu3bVhAkTNHnyZFWvXl0xMTGScj665MiRI+rfv7+qVKmiatWqqW/fvjp06JCkP/58880339SKFSvsfyGSmJioW2+9VRMmTHDo7+TJk/Lx8eGOGeA648ePl4+Pj7788kt16dJFtWvXVu/evbVmzRodPXpUjz32mKQ//rJx5syZGjJkiAICAjR69Ohc/3KyoLnzz48uufYn2G+//bbCw8MVGBioe+65RxcuXCjFqwCUDcOGDVNSUpJeeOEF+5x2bb7bvXu3evfurcqVKys4OFiDBw/WqVOn7G27du2qiRMnavLkyapataqCg4P1+uuv69KlSxo+fLj8/f3VoEEDffHFF3n2v2fPHh04cECvvPKKbr75ZtWpU0edOnXSU089pZtvvllSzr+Yvv4vNK//SkxMlCRlZGTooYceUmhoqCpVqqTIyEj7PsDdFKamdfjwYfXt21eVK1dWQECA+vfvr7S0tDzPmZ2drSeffFI33nijfH191bp1a61cudK+/1rOLlu2TF26dJGfn5/9/8QwD4Vu6MyZM1q5cqXGjx+vSpUq5dif17P+tmzZIklas2aNjh8/rg8//FB/+ctfVK9ePb399tv2465evaolS5bo/vvvzzeOunXr6h//+Ifi4+OVnZ2d6zEXLlzQ0KFDtX79em3atEkRERG67bbbcizYr/1nYceOHWrcuLHuvfdejRkzRvHx8fr2229lGIbDf9LXrVunIUOGKDY2Vj/88INee+01LV68WLNmzco3ZsBKKlSooMzMTHl4eOjFF1/Unj179Oabb+qrr77SI488Yj9ux44d6t69u5o2bark5GStX79effr0UVZWVo5zLl26VAMHDtSSJUs0aNAgSX/k/MyZM7Vz5059/PHHOnTokIYNG2Zvc/DgQf39739Xv379tHPnTo0ZM8b+n/1rDhw4oF69eumuu+7Srl27tGzZMq1fvz5HcQ0oj7y8vDRkyBAtXrxYhmHYty9fvlxZWVm677771K5dO3322WfavXu3Ro8ercGDB9vn5WvefPNN+fj4aMOGDVqwYEGOfq5evaqYmBj5+/tr3bp12rBhgypXrqxevXopMzNTDz30kPr3769evXrp+PHjOn78uDp27KiRI0dq6dKlysjIsJ/rnXfeUWhoqG699VbXXRjAQs6cOaNVq1Zp3LhxOe6yDgkJ0aBBg7Rs2TJ7jj/33HNq1aqVvvvuO02bNi3H+Qozd+bmwIED+vjjj/Xpp5/q008/VVJSkmbPnl0ygwQs5IUXXlBUVJRGjRpln9PCwsJ07tw53XrrrWrTpo2+/fZbrVy5Umlpaerfv79D+zfffFPVq1fXli1bNHHiRI0dO1Z33323OnbsqO3bt6tnz54aPHiwLl++nGv/NWrUkIeHhz744INc19R5xXwt1uPHjys2NlZBQUFq3LixJGnChAlKTk7We++9p127dunuu+9Wr169tG/fvuJdLMBiClPTys7OVt++fXXmzBklJSVp9erV+vnnnzVgwIA8z/vCCy/o+eef13PPPaddu3YpJiZGf/3rX3Pk2KOPPqrY2FilpKTYby6BiQy4vc2bNxuSjA8//LDAYyUZH330kWEYhnHw4EFDkvHdd985HDNnzhyjSZMm9tf/+c9/jMqVKxsXL17M87x16tQx/vWvfxknTpww/P39jbfeesswDMOIjY01unTpkme7rKwsw9/f3/jvf//rEOPUqVPtr5OTkw1JxhtvvGHf9u677xp+fn721927dzeefvpph3O//fbbRs2aNfPsGyjLhg4davTt29cwDMPIzs42Vq9ebfj6+hoPPfRQjmOXL19u3HDDDfbXAwcONDp16pTnubt06WLExsYaL7/8shEYGGgkJibmG8vWrVsNScaFCxcMwzCMKVOmGM2bN3c45rHHHjMkGWfPnjUMwzBGjBhhjB492uGYdevWGR4eHsZvv/2Wb39AeZCSkmJIMr7++mv7ts6dOxv33XdfrsfffvvtxoMPPmh/3aVLF6NNmzY5jrt+Hn/77beNRo0aGdnZ2fb9GRkZRoUKFYxVq1YZhuH4s+Sa3377zahataqxbNky+7aWLVsajz/+uLPDBMqtTZs2OeTbn82dO9eQZKSlpRl16tQx+vXr57D/z+vswsydixYtMgIDA+37Z8yYYVSsWNFIT0+3b3v44YeNyMjIYo8PsII/z2HX1rDXmzlzptGzZ0+HbUeOHDEkGXv37rW3u+WWW+z7f//9d6NSpUrG4MGD7duOHz9uSDKSk5PzjOfll182KlasaPj7+xvdunUznnzySePAgQP2/Xn9/9ow/vg/tZ+fn7F+/XrDMAzjl19+MTw9PY2jR486HNe9e3cjPj4+zxiA8qgwNa0vv/zS8PT0NA4fPmzftmfPHkOSsWXLFsMw/pg3W7VqZd9fq1YtY9asWQ7nuemmm4xx48YZhvG/nJ03b14JjgbFxR3dcLhbrCQMGzZM+/fvt/95yOLFi9W/f/9cf7P2ZzVq1NBDDz2k6dOnKzMzM8f+tLQ0jRo1ShEREQoMDFRAQIAuXryow4cPOxx3/bNLg4ODJUktWrRw2HblyhWlp6dLknbu3Kknn3xSlStXtn9d+21/Xr+VB8q6Tz/9VJUrV5afn5969+6tAQMG6PHHH9eaNWvUvXt3hYaGyt/fX4MHD9bp06ft3+vX7ujOzwcffKAHHnhAq1evVpcuXRz2bdu2TX369FHt2rXl7+9v338tT/fu3aubbrrJoU2HDh0cXu/cuVOLFy92yMmYmBhlZ2fr4MGDxbougBU0btxYHTt21MKFCyVJ+/fv17p16zRixAhlZWVp5syZatGihapVq6bKlStr1apVOebCdu3a5dvHzp07tX//fvn7+9vzrFq1arpy5UqOx3tdz8/PT4MHD7bHtn37du3evdvhLzcA/KGw6+z27dvnu78wc2duwsPD5e/vb39ds2bNHI8TA9zZzp079fXXXzusOa/dMX39XHj9/y89PT11ww035Pj/paR882v8+PFKTU3VkiVLFBUVpeXLl6tZs2ZavXp1vjF+9913Gjx4sF5++WV16tRJkvT9998rKytLDRs2dIg9KSkp3zkcKI8KM9empKQoLCxMYWFh9m1NmzZVlSpVlJKSkuP49PR0HTt2zJ5z13Tq1CnH8QXN4ShdfBglFBERIZvNVmIP5w8KClKfPn20aNEi1a1bV1988YVTzwqLi4vTK6+8oldeeSXHvqFDh+r06dN64YUXVKdOHfn6+ioqKipHUfz6h//bbLY8t117RMrFixf1xBNP6G9/+1uOPv38/AodO1CWdOvWTa+++qp8fHxUq1YteXl56dChQ7rjjjs0duxYzZo1S9WqVdP69es1YsQIZWZmqmLFioX6IKs2bdpo+/btWrhwodq3b2/PqUuXLikmJkYxMTFasmSJatSoocOHDysmJibXX17l5eLFixozZowmTZqUY1/t2rULfxEACxsxYoQmTpyo+fPna9GiRapfv766dOmiOXPm6IUXXtC8efPsz9ufPHlyjhwr6BfMFy9eVLt27XJ9lmCNGjXybTty5Ei1bt1av/76qxYtWqRbb71VderUcX6QQDnVoEED2Ww2paSk6M4778yxPyUlRVWrVrXnWmFuCCmKP38gls1my/MRgYA7unjxovr06aM5c+bk2FezZk37v3PLpfz+f5kXf39/9enTR3369NFTTz2lmJgYPfXUU+rRo0eux6empuqvf/2rRo4cqREjRjjE7enpqW3btsnT09OhTeXKlfONAShvSrqm5SxXzeEoGu7ohqpVq6aYmBjNnz8/1w96u/7D4a7n4+MjSbk+Y2zkyJFatmyZ/v3vf6t+/fo5fguWn8qVK2vatGmaNWtWjmdvb9iwQZMmTdJtt92mZs2aydfX1+GDQoqqbdu22rt3rxo0aJDjy8ODNIE1VapUSQ0aNFDt2rXl5fXH7zW3bdum7OxsPf/887r55pvVsGFDHTt2zKFdy5YtC/xAufr16+vrr7/WihUrNHHiRPv2H3/8UadPn9bs2bPVuXNnNW7cOMedLY0aNdK3337rsG3r1q0Or9u2basffvgh15y89rMHKO/69+8vDw8PLV26VG+99Zbuv/9+2Ww2bdiwQX379tV9992nVq1aqV69evrpp5+cPn/btm21b98+BQUF5cizwMBASX/M9bnN8y1atFD79u31+uuva+nSpQV+Dgfgbm644Qb16NFDr7zyin777TeHfdfu6BwwYIC9OFaQwsydAPKX25zWtm1b7dmzR+Hh4TnmQlcXr2w2mxo3bpznh61fuXJFffv2VePGjTV37lyHfW3atFFWVpZOnDiRI+6QkBCXxg2UNYWpaTVp0kRHjhzRkSNH7Nt/+OEHnTt3Tk2bNs3RJiAgQLVq1dKGDRsctm/YsCHX41F2UMGDJGn+/PnKyspShw4d9J///Ef79u1TSkqKXnzxRUVFReXaJigoSBUqVLB/YMf58+ft+2JiYhQQEKCnnnpKw4cPdzqe0aNHKzAwUEuXLnXYHhERobffflspKSnavHmzBg0aVKi7Twsyffp0vfXWW3riiSe0Z88epaSk6L333tPUqVOLfW6gLGnQoIGuXr2ql156ST///LPefvvtHB9SFx8fr61bt2rcuHHatWuXfvzxR7366qs5fqnUsGFDff311/rPf/6jyZMnS/rjbmsfHx/7+T/55BPNnDnTod2YMWP0448/asqUKfrpp5/0/vvva/HixZL+dzfMlClTtHHjRk2YMEE7duzQvn37tGLFCj6MEm6lcuXKGjBggOLj43X8+HH7o0EiIiK0evVqbdy4USkpKRozZky+nxifl0GDBql69erq27ev1q1bp4MHDyoxMVGTJk3Sr7/+KumPxx7s2rVLe/fu1alTp3T16lV7+5EjR2r27NkyDCPXO1YBd/fyyy8rIyNDMTEx+uabb3TkyBGtXLlSPXr0UGhoqFMfel6YuRNA/sLDw7V582YdOnRIp06dUnZ2tsaPH68zZ85o4MCB2rp1qw4cOKBVq1Zp+PDhhf7QyMLYsWOH+vbtqw8++EA//PCD9u/frzfeeEMLFy5U3759c20zZswYHTlyRC+++KJOnjyp1NRUpaamKjMzUw0bNtSgQYM0ZMgQffjhhzp48KC2bNmihIQEffbZZyUWN2AVBdW0oqOj1aJFCw0aNEjbt2/Xli1bNGTIEHXp0iXPR488/PDDmjNnjpYtW6a9e/fq0Ucf1Y4dOxQbG1vKo4MzKHRDklSvXj1t375d3bp104MPPqjmzZurR48eWrt2rV599dVc23h5eenFF1/Ua6+9plq1ajlM0B4eHho2bJiysrI0ZMgQp+Px9vbWzJkzdeXKFYftb7zxhs6ePau2bdtq8ODBmjRpkoKCgpw+/5/FxMTo008/1ZdffqmbbrpJN998s/71r3/xZ9god1q1aqW5c+dqzpw5at68uZYsWaKEhASHYxo2bKgvv/xSO3fuVIcOHRQVFaUVK1bY7wq/XqNGjfTVV1/p3Xff1YMPPqgaNWpo8eLFWr58uZo2barZs2frueeec2hTt25dffDBB/rwww/VsmVLvfrqq3rsscckSb6+vpL+uKs8KSlJP/30kzp37qw2bdpo+vTpqlWrlouuDFA2jRgxQmfPnlVMTIz9+3/q1Klq27atYmJi1LVrV4WEhKhfv35On7tixYr65ptvVLt2bf3tb39TkyZNNGLECF25ckUBAQGSpFGjRqlRo0Zq3769atSo4XBXy8CBA+Xl5aWBAwfymC8gFxEREfr2229Vr1499e/fX/Xr19fo0aPVrVs3JScnq1q1aoU+V2HmTgD5e+ihh+Tp6ammTZvaH6937Y7NrKws9ezZUy1atNDkyZNVpUqVEv3L3htvvFHh4eF64oknFBkZqbZt2+qFF17QE088Yc/lP0tKStLx48fVtGlT1axZ0/61ceNGSdKiRYs0ZMgQPfjgg2rUqJH69eunrVu38pg/uKWCalo2m00rVqxQ1apV9Ze//EXR0dGqV6+eli1bluc5J02apLi4OD344INq0aKFVq5cqU8++UQRERGlODI4y2aU9CcRAv/fiBEjdPLkSX3yySdmhwKgjJs1a5YWLFjg8KdkAMq2Q4cOqX79+tq6davatm1rdjiA22HuBAAAcMSHUaLEnT9/Xt9//72WLl1KkRtArl555RXddNNNuuGGG7RhwwY9++yzPJYEsIirV6/q9OnTmjp1qm6++WaK3EApYe4EAADIH4VulLi+fftqy5Yt+sc//pHnp0cDcG/79u3TU089pTNnzqh27dp68MEHFR8fb3ZYAAphw4YN6tatmxo2bKgPPvjA7HAAt8HcCQAAkD8eXQIAAAAAAAAAsDQ+jBIAAAAAAAAAYGkUugEAAAAAAAAAlkahGwAAAAAAAABgaRS6AQAAAAAAAACWRqEbAAAAAAAAAGBpFLoBAAAAAAAAAJZGoRsAAAAAAAAAYGkUugEAAAAAAAAAlvb/AGxU1Wz5ZzmrAAAAAElFTkSuQmCC", "text/plain": [ "
" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "import seaborn as sns\n", "\n", "g = sns.PairGrid(new_pumpkins)\n", "g.map(sns.scatterplot)" ] }, { "cell_type": "markdown", "id": "c59ad2c7", "metadata": {}, "source": [ "By observing data side-by-side, you can see how the Color data relates to the other columns.\n", "\n", ":::{seealso}\n", "Given this scatterplot grid, what are some interesting explorations you can envision?\n", ":::" ] }, { "cell_type": "markdown", "id": "8f05f9ad", "metadata": {}, "source": [ "### Use a swarm plot\n", "\n", "Since Color is a binary category (Orange or Not), it's called 'categorical data' and needs 'a more [specialized approach](https://seaborn.pydata.org/tutorial/categorical.html?highlight=bar) to visualization'. There are other ways to visualize the relationship of this category with other variables. \n", "\n", "You can visualize variables side-by-side with Seaborn plots.\n", "\n", "1. Try a 'swarm' plot to show the distribution of values:" ] }, { "cell_type": "code", "execution_count": 6, "id": "6479efe8", "metadata": { "attributes": { "classes": [ "code-cell" ], "id": "" } }, "outputs": [ { "name": "stderr", "output_type": "stream", "text": [ "d:\\conda\\envs\\py39\\lib\\site-packages\\seaborn\\categorical.py:3544: UserWarning: 63.4% of the points cannot be placed; you may want to decrease the size of the markers or use stripplot.\n", " warnings.warn(msg, UserWarning)\n", "d:\\conda\\envs\\py39\\lib\\site-packages\\seaborn\\categorical.py:3544: UserWarning: 21.8% of the points cannot be placed; you may want to decrease the size of the markers or use stripplot.\n", " warnings.warn(msg, UserWarning)\n" ] }, { "data": { "text/plain": [ "" ] }, "execution_count": 6, "metadata": {}, "output_type": "execute_result" }, { "name": "stderr", "output_type": "stream", "text": [ "d:\\conda\\envs\\py39\\lib\\site-packages\\seaborn\\categorical.py:3544: UserWarning: 79.2% of the points cannot be placed; you may want to decrease the size of the markers or use stripplot.\n", " warnings.warn(msg, UserWarning)\n", "d:\\conda\\envs\\py39\\lib\\site-packages\\seaborn\\categorical.py:3544: UserWarning: 35.9% of the points cannot be placed; you may want to decrease the size of the markers or use stripplot.\n", " warnings.warn(msg, UserWarning)\n" ] }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAioAAAGwCAYAAACHJU4LAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8o6BhiAAAACXBIWXMAAA9hAAAPYQGoP6dpAAAlOUlEQVR4nO3de3BU9fnH8c9BJFjJhqKQFJOIQoIlXIIIFPGSiDW1DmppvVVHah3rNBEvaIVY+8PUSyy2TrwQsP9IZbTSdoq1tRKtk6BDVS4CIqgQFFkLCSJlN6E1KNnfH447Dbub7C57cp7Nvl8zO9M933Oe5/uNe9hPT85mnVAoFBIAAIBB/byeAAAAQCwEFQAAYBZBBQAAmEVQAQAAZhFUAACAWQQVAABgFkEFAACY1d/rCRyNzs5O7d69W9nZ2XIcx+vpAACAOIRCIbW1tWn48OHq16/7ayZpHVR2796tgoICr6cBAACS4Pf7lZ+f3+0+aR1UsrOzJX25UJ/P5/FsAABAPILBoAoKCsLv491J66Dy1a97fD4fQQUAgDQTz20b3EwLAADMIqgAAACzCCoAAMAsggoAADCLoAIAAMwiqAAAALMIKgAAwCyCCgAAMIugAgAAzCKoAAAAszwPKv/61790zTXX6IQTTtBxxx2ncePGad26dV5PCwAAGODpd/38+9//1vTp01VeXq4XX3xRQ4cO1fbt2/X1r3/dy2mFjZj/QsS2Cfk52tbaruLcQaosH6WKkrzwWMOWFtU3NkcdT3bMrbpe9GQtNnsmeuymjwMR58XOBy+K2Ib4ZOrryHJPi2vJZE4oFAp51Xz+/PlavXq1XnvttaSODwaDysnJUSAQSPmXEkYLKUdyHGnJNZNUUZKnhi0tunHZ+qjjkpIac6uuFz1Zi82eydSNhbCSuEx+HVntaXEtfTGsJPL+7ekVleeff14VFRW67LLLtGrVKp100kmqrKzUDTfcEHX/jo4OdXR0hJ8Hg8HemmpUoZBU37RDFSV5qm9sjjmuKFkwnjG36nrRk7XY7JlMXaROJr+OrPa0uJa+GFQS4WlQ+eCDD7R48WLNnTtXd911l9auXaubb75ZAwYM0OzZsyP2r62tVU1NjQczjW17a5skaVtre8zxWP/W9zTmVl0verpVl7V4UxepkemvI4s93ap7ND0znac303Z2dur000/XAw88oIkTJ+onP/mJbrjhBi1ZsiTq/tXV1QoEAuGH3+/v5RlHKsrNliQV5w6KOZ7smFt1vejpVl3W4k1dpEamv44s9nSr7tH0zHSeBpVvfOMbGjNmTJdt3/zmN7Vr166o+2dlZcnn83V5eMlxpKqykZKkyvJRcpzo48mOuVXXi56sxWbPZOoidTL5dWS1p8W1ZDpPb6b94Q9/KL/f3+Vm2ttuu01vvvmm/vnPf/Z4vJs300oxPvVTMFjbW9tUlJutqrKRuuDIO7abdkQdT3bMrbpe9GQtNnsmeuwm/4GI84IbaZOXqa8jyz0trqWvSeT929OgsnbtWp155pmqqanR5ZdfrjVr1uiGG27Qb3/7W1199dU9Hu92UAEAAKmXyPu3p7/6mTx5slasWKHf//73Gjt2rO69917V1dXFFVIAAEDf5+kVlaPFFRUAANJP2lxRAQAA6A5BBQAAmEVQAQAAZhFUAACAWQQVAABgFkEFAACYRVABAABmEVQAAIBZBBUAAGAWQQUAAJhFUAEAAGYRVAAAgFkEFQAAYBZBBQAAmEVQAQAAZhFUAACAWQQVAABgFkEFAACYRVABAABmEVQAAIBZBBUAAGAWQQUAAJhFUAEAAGYRVAAAgFkEFQAAYBZBBQAAmEVQAQAAZhFUAACAWQQVAABgFkEFAACYRVABAABmEVQAAIBZBBUAAGAWQQUAAJhFUAEAAGYRVAAAgFkEFQAAYBZBBQAAmEVQAQAAZhFUAACAWQQVAABgFkEFAACYRVABAABmEVQAAIBZBBUAAGCWp0HlnnvukeM4XR6nnXaal1MCAACG9Pd6AiUlJfrHP/4Rft6/v+dTChsx/4WIbRPyc7SttV3FuYNUWT5KFSV54bGGLS2qb2yOOp7smFt1vejJWmz2TPTYTR8HIs6LnQ9eFLHNOs7v9KjLWji/nVAoFPKq+T333KPnnntOGzduTOr4YDConJwcBQIB+Xy+lM4t2j9iR3Icack1k1RRkqeGLS26cdn6qOOSkhpzq64XPVmLzZ7J1I3F63/MEsH5nR51WUvfPb8Tef/2/PLF9u3bNXz4cA0cOFDTpk1TbW2tCgsLo+7b0dGhjo6O8PNgMNhb04wqFJLqm3aooiRP9Y3NMccVJQvGM+ZWXS96shabPZOpmyks/uyt9mQtNnv2lfPb06AydepULV26VKNHj9aePXtUU1Ojs88+W++8846ys7Mj9q+trVVNTY0HM41te2ubJGlba3vM8VivhZ7G3KrrRU+36rIWb+pmCos/e4s93arLWji/JY9vpr3wwgt12WWXafz48aqoqNDf//53HThwQH/4wx+i7l9dXa1AIBB++P3+Xp5xpKLcLwNVce6gmOPJjrlV14uebtVlLd7UzRQWf/YWe7pVl7VwfkvGPp48ePBgFRcXq7k58lKVJGVlZcnn83V5eMlxpKqykZKkyvJRcpzo48mOuVXXi56sxWbPZOpmCos/e6s9WYvNnsnUtcjTm2mP1N7ersLCQt1zzz26+eabe9zfzZtppRifCigYrO2tbSrKzVZV2UhdcOSd1U07oo4nO+ZWXS96shabPRM9dpP/QMR5kU430n6F8zs96rKWvnl+J/L+7WlQueOOOzRz5kydfPLJ2r17txYsWKCNGzdq69atGjp0aI/Hux1UAABA6qXNp34+/vhjXXXVVfr00081dOhQnXXWWXrjjTfiCikAAKDv8zSoPPvss162BwAAxpm6mRYAAOB/EVQAAIBZBBUAAGAWQQUAAJhFUAEAAGYRVAAAgFkEFQAAYBZBBQAAmEVQAQAAZhFUAACAWQQVAABgFkEFAACYRVABAABmEVQAAIBZBBUAAGAWQQUAAJhFUAEAAGYRVAAAgFkEFQAAYBZBBQAAmEVQAQAAZhFUAACAWQQVAABgFkEFAACYRVABAABmEVQAAIBZBBUAAGAWQQUAAJhFUAEAAGYRVAAAgFkEFQAAYBZBBQAAmEVQAQAAZhFUAACAWQQVAABgFkEFAACYRVABAABmEVQAAIBZBBUAAGAWQQUAAJhFUAEAAGYRVAAAgFkEFQAAYBZBBQAAmEVQAQAAZpkJKg8++KAcx9Gtt97q9VQAAIAR/b2egCStXbtWTzzxhMaPH+/1VLoYMf+FiG0T8nO0rbVdxbmDVFk+ShUleeGxhi0tqm9sjjqe7Jhbdb3oyVps9kz02E0fByLOi50PXhSxDd5Jh9eR5Z7xjKP3OKFQKOTlBNrb23X66aervr5e9913n0pLS1VXVxfXscFgUDk5OQoEAvL5fCmdV7SQciTHkZZcM0kVJXlq2NKiG5etjzouKakxt+p60ZO12OyZTN1YCCs2dPff09LryGrPnuoSVlIjkfdvz6+oVFVV6aKLLtL555+v++67r9t9Ozo61NHREX4eDAbdnl63QiGpvmmHKkryVN/YHHNcUbJgPGNu1fWiJ2ux2TOZurCtu/+ell5HVnv2VJeg0vs8DSrPPvus3nrrLa1duzau/Wtra1VTU+PyrBKzvbVNkrSttT3meKx/63sac6uuFz3dqstavKkLu7r779nTuLXXp8VzAr3Ps5tp/X6/brnlFj399NMaOHBgXMdUV1crEAiEH36/3+VZ9qwoN1uSVJw7KOZ4smNu1fWip1t1WYs3dWFXOr2OLPbsqS56n2dBZf369dq7d69OP/109e/fX/3799eqVav06KOPqn///jp8+HDEMVlZWfL5fF0eXnIcqapspCSpsnyUHCf6eLJjbtX1oidrsdkzmbqwLV1eR1Z79lQXvc+zm2nb2tr00Ucfddl23XXX6bTTTtO8efM0duzYHmu4eTOtFONTPwWDtb21TUW52aoqG6kLjrxLvGlH1PFkx9yq60VP1mKzZ6LHbvIfiDgvuJHWlnR4HVnuGc84jk4i79+ef+rnf5WVlZn51A8AAHBHIu/fZv7gGwAAwJE8/3jy/2pqavJ6CgAAwBCuqAAAALMIKgAAwCyCCgAAMIugAgAAzCKoAAAAswgqAADALIIKAAAwi6ACAADMIqgAAACzCCoAAMAsggoAADCLoAIAAMwiqAAAALMIKgAAwCyCCgAAMIugAgAAzCKoAAAAswgqAADALIIKAAAwK6mgsmPHDt1999266qqrtHfvXknSiy++qC1btqR0cgAAILMlHFRWrVqlcePG6c0339Sf//xntbe3S5I2bdqkBQsWpHyCAAAgcyUcVObPn6/77rtPL7/8sgYMGBDeft555+mNN95I6eQAAEBmSziobN68Wd/73vcitg8bNkz79u1LyaQAAACkJILK4MGDtWfPnojtGzZs0EknnZSSSQEAAEhJBJUrr7xS8+bNU0tLixzHUWdnp1avXq077rhD1157rRtzBAAAGSrhoPLAAw/otNNOU0FBgdrb2zVmzBidc845OvPMM3X33Xe7MUcAAJChnFAoFErmQL/fr82bN6u9vV0TJ05UUVFRqufWo2AwqJycHAUCAfl8vl7vDwAAEpfI+3f/RIu/+uqr4SsqBQUF4e2ff/65Xn/9dZ1zzjmJzxgAACCKhH/1U1ZWpgkTJkR8FHn//v0qLy9P2cQAAACS+su0V155pWbMmKGlS5d22Z7kb5EAAACiSjioOI6j6upqLVu2TDfddJPmzp0bDiiO46R8ggAAIHMlHFS+CiWzZs3Sa6+9pj/96U+68MILdeDAgVTPDQAAZLij+vbkiRMnas2aNTpw4IBmzJiRqjkBAABISiKozJ49W8cdd1z4eV5enlatWqUZM2aosLAwpZMDAACZLem/o2IBf0cFAID0k/K/o/L2229r7Nix6tevn95+++1u9x0/fnz8MwUAAOhGXEGltLRULS0tGjZsmEpLS+U4TpePIn/13HEcHT582LXJAgCAzBJXUPnwww81dOjQ8P8GAADoDXEFlZNPPjnq/wYAAHBT3J/62bZtm9asWdNl2yuvvKLy8nJNmTJFDzzwQMonBwAAMlvcQWXevHn629/+Fn7+4YcfaubMmRowYICmTZum2tpa1dXVuTFHAACQoeL+9uR169bpzjvvDD9/+umnVVxcrIaGBklfftrnscce06233prySQIAgMwU9xWVffv2KT8/P/y8sbFRM2fODD8vKyvTzp07Uzo5AACQ2eIOKkOGDNGePXskSZ2dnVq3bp2+9a1vhccPHTrEtycDAICUijuolJWV6d5775Xf71ddXZ06OztVVlYWHt+6datGjBjhwhQBAECmijuo3H///Xrvvfd08skna968eVq4cKGOP/748PiyZct03nnnJdR88eLFGj9+vHw+n3w+n6ZNm6YXX3wxoRoAAKDvSui7fr744gtt2bJFQ4cO1fDhw7uMbdq0Sfn5+TrhhBPibv7Xv/5VxxxzjIqKihQKhfS73/1ODz30kDZs2KCSkpIej3f7u35GzH8hYtuE/Bxta21Xce4gVZaPUkVJXnisYUuL6hubo44nO+ZWXS96shabPRM9dtPHgYjzYueDF0VsQ9/Tl84JeCuR929zX0o4ZMgQPfTQQ7r++ut73NfNoBItpBzJcaQl10xSRUmeGra06MZl66OOS0pqzK26XvRkLTZ7JlM3FsJK39bd6yTdzgnCivdS/qWEveHw4cP64x//qIMHD2ratGlR9+no6FBHR0f4eTAY7K3pRRUKSfVNO1RRkqf6xuaY44qSBeMZc6uuFz1Zi82eydRFZurudZJu5wRBJb14HlQ2b96sadOm6bPPPtOgQYO0YsUKjRkzJuq+tbW1qqmp6eUZdm97a5skaVtre8zxWP/W9zTmVl0verpVl7V4UxeZp7vXSU/j1s4JpJe4b6Z1y+jRo7Vx40a9+eab+ulPf6rZs2dr69atUfetrq5WIBAIP/x+fy/PNlJRbrYkqTh3UMzxZMfcqutFT7fqshZv6iLz9KVzAunF86AyYMAAjRo1SpMmTVJtba0mTJigRx55JOq+WVlZ4U8IffXwkuNIVWUjJUmV5aPkONHHkx1zq64XPVmLzZ7J1EVm6kvnBNJLUjfTfvbZZ3r77be1d+9edXZ2dhm7+OKLj2pC5513ngoLC7V06dIe9/XkUz8Fg7W9tU1FudmqKhupC468+7xpR9TxZMfcqutFT9Zis2eix27yH4g4L7iRNjP0pXMC3nL1Uz8rV67Utddeq3379kUWcxwdPnw47lrV1dW68MILVVhYqLa2Nj3zzDP61a9+pYaGBn3729/u8Xi3gwoAAEi9RN6/E/7Vz5w5c3TZZZdpz5496uzs7PJIJKRI0t69e3Xttddq9OjRmjFjhtauXRt3SAEAAH1fwldUfD6fNmzYoJEjvf89H1dUAABIP65eUfnBD36gpqamZOcGAAAQt4SvqPznP//RZZddpqFDh2rcuHE69thju4zffPPNKZ1gd7iiAgBA+nH1L9P+/ve/10svvaSBAweqqalJzv98/stxnF4NKgAAoG9LOKj8/Oc/V01NjebPn69+/Tz/MywAAKAPSzhpHDp0SFdccQUhBQAAuC7htDF79mwtX77cjbkAAAB0kfCvfg4fPqyFCxeqoaFB48ePj7iZ9uGHH07Z5AAAQGZLOKhs3rxZEydOlCS98847XcYcvhQEAACkUMJBpbGx0Y15AAAAREj6jtjm5mY1NDTov//9ryQpie82BAAA6FbCQeXTTz/VjBkzVFxcrO9+97vas2ePJOn666/X7bffnvIJAgCAzJVwULntttt07LHHateuXfra174W3n7FFVdo5cqVKZ0cAADIbAnfo/LSSy+poaFB+fn5XbYXFRXpo48+StnEAAAAEr6icvDgwS5XUr6yf/9+ZWVlpWRSAAAAUhJB5eyzz9ZTTz0Vfu44jjo7O7Vw4UKVl5endHIAACCzJfyrn4ULF2rGjBlat26dDh06pDvvvFNbtmzR/v37tXr1ajfmCAAAMlTCV1TGjh2rbdu26ayzztIll1yigwcPatasWdqwYYNGjhzpxhwBAECGckIJ/gGUXbt2qaCgIOpfod21a5cKCwtTNrmeBINB5eTkKBAIyOfz9VpfAACQvETevxO+onLKKafok08+idj+6aef6pRTTkm0HAAAQEwJB5VQKBT1akp7e7sGDhyYkkkBAABICdxMO3fuXElffsrnF7/4RZePKB8+fFhvvvmmSktLUz5BAACQueIOKhs2bJD05RWVzZs3a8CAAeGxAQMGaMKECbrjjjtSP0MAAJCx4g4qX31r8nXXXadHHnmEm1cBAIDrEv47Kk8++aQb8wAAAIgQd1CZNWtWXPv9+c9/TnoyAAAA/yvuoJKTk+PmPAAAACLEHVT4lQ8AAOhtCf8dFQAAgN5CUAEAAGYRVAAAgFkEFQAAYBZBBQAAmEVQAQAAZhFUAACAWQQVAABgFkEFAACYRVABAABmEVQAAIBZBBUAAGAWQQUAAJhFUAEAAGYRVAAAgFkEFQAAYBZBBQAAmEVQAQAAZnkaVGprazV58mRlZ2dr2LBhuvTSS/X+++97OSUAAGBIfy+br1q1SlVVVZo8ebK++OIL3XXXXbrgggu0detWHX/88V5OTZI0Yv4LEdsm5OdoW2u7inMHqbJ8lCpK8sJjDVtaVN/YHHU82TG36nrRk7XY7JnosZs+DkScFzsfvChiG+yy8Dqy3DOecfQeJxQKhbyexFc++eQTDRs2TKtWrdI555zT4/7BYFA5OTkKBALy+XwpnUu0kHIkx5GWXDNJFSV5atjSohuXrY86LimpMbfqetGTtdjsmUzdWAgr6cHK68hqz57qElZSI5H3b0+vqBwpEPjy/6kNGTIk6nhHR4c6OjrCz4PBYK/MK5ZQSKpv2qGKkjzVNzbHHFeULBjPmFt1vejJWmz2TKYu0puV15HVnj3VJaj0PjNBpbOzU7feequmT5+usWPHRt2ntrZWNTU1vTyz7m1vbZMkbWttjzke69/6nsbcqutFT7fqshZv6iJ9WXodWezZU130PjOf+qmqqtI777yjZ599NuY+1dXVCgQC4Yff7+/FGUZXlJstSSrOHRRzPNkxt+p60dOtuqzFm7pIX5ZeRxZ79lQXvc9EULnpppv0t7/9TY2NjcrPz4+5X1ZWlnw+X5eHlxxHqiobKUmqLB8lx4k+nuyYW3W96MlabPZMpi7Sm5XXkdWePdVF7/P0ZtpQKKQ5c+ZoxYoVampqUlFRUULHu3kzrRTjUz8Fg7W9tU1FudmqKhupC468S7xpR9TxZMfcqutFT9Zis2eix27yH4g4L7iRNr1YeB1Z7hnPOI5OIu/fngaVyspKPfPMM/rLX/6i0aNHh7fn5OTouOOO6/F4t4MKAABIvbQJKk6Ma8pPPvmkfvSjH/V4PEEFAID0kzYfTzb0J1wAAIBBJm6mBQAAiIagAgAAzCKoAAAAswgqAADALIIKAAAwi6ACAADMIqgAAACzCCoAAMAsggoAADCLoAIAAMwiqAAAALMIKgAAwCyCCgAAMIugAgAAzCKoAAAAswgqAADALIIKAAAwi6ACAADMIqgAAACzCCoAAMAsggoAADCLoAIAAMwiqAAAALMIKgAAwCyCCgAAMIugAgAAzCKoAAAAswgqAADALIIKAAAwi6ACAADMIqgAAACzCCoAAMAsggoAADCLoAIAAMwiqAAAALMIKgAAwCyCCgAAMIugAgAAzCKoAAAAswgqAADALIIKAAAwi6ACAADMIqgAAACzCCoAAMAsggoAADDL06Dy6quvaubMmRo+fLgcx9Fzzz3n5XQAAIAx/b1sfvDgQU2YMEE//vGPNWvWLC+nEtWI+S9EbJuQn6Ntre0qzh2kyvJRqijJC481bGlRfWNz1PFkx9yq60VP1mKzZ6LHbvo4EHFe7HzwoohtfY2Fn73lnqzFZs++wAmFQiGvJyFJjuNoxYoVuvTSS+M+JhgMKicnR4FAQD6fL6XziRZSjuQ40pJrJqmiJE8NW1p047L1UcclJTXmVl0verIWmz2TqRtLXw4rVn72VnuyFps9LYeVRN6/Pb2ikqiOjg51dHSEnweDQQ9nI4VCUn3TDlWU5Km+sTnmuKJkwXjG3KrrRU/WYrNnMnUzkZWfvdWerMVmT8tBJRFpFVRqa2tVU1Pj9TS62N7aJkna1toeczzWv/U9jblV14uebtVlLd7UzTSWfvYWe7pVl7Ucfd2+IK0+9VNdXa1AIBB++P1+r6ekotxsSVJx7qCY48mOuVXXi55u1WUt3tTNNJZ+9hZ7ulWXtRx93b4grYJKVlaWfD5fl4eXHEeqKhspSaosHyXHiT6e7Jhbdb3oyVps9kymbiay8rO32pO12OzZV3AzbTeifuqnYLC2t7apKDdbVWUjdcGRd2w37Yg6nuyYW3W96MlabPZM9NhN/gMR50VfvpH2KxZ+9pZ7shabPa1K5P3b06DS3t6u5uYvbyCaOHGiHn74YZWXl2vIkCEqLCzs8Xi3gwoAAEi9tPnUz7p161ReXh5+PnfuXEnS7NmztXTpUo9mBQAArPA0qJSVlcnIb54AAIBBaXUzLQAAyCwEFQAAYBZBBQAAmEVQAQAAZhFUAACAWQQVAABgFkEFAACYRVABAABmEVQAAIBZBBUAAGAWQQUAAJhFUAEAAGYRVAAAgFkEFQAAYBZBBQAAmEVQAQAAZhFUAACAWQQVAABgFkEFAACYRVABAABmEVQAAIBZBBUAAGAWQQUAAJhFUAEAAGYRVAAAgFkEFQAAYBZBBQAAmEVQAQAAZhFUAACAWQQVAABgFkEFAACYRVABAABmEVQAAIBZBBUAAGAWQQUAAJhFUAEAAGYRVAAAgFkEFQAAYBZBBQAAmEVQAQAAZhFUAACAWQQVAABgFkEFAACYRVABAABmEVQAAIBZJoLKokWLNGLECA0cOFBTp07VmjVrvJ4SAAAwoL/XE1i+fLnmzp2rJUuWaOrUqaqrq1NFRYXef/99DRs2zOvp9VkNW1pU39isba3tKs4dpMryUaooyYtrPNkxt+paXAsAIDWcUCgU8nICU6dO1eTJk/X4449Lkjo7O1VQUKA5c+Zo/vz53R4bDAaVk5OjQCAgn8/XG9PtExq2tOjGZeu7bHMcack1k1RRktftuKSkxtyq60XPnuoSVgCge4m8f3t6ReXQoUNav369qqurw9v69eun888/X6+//nrE/h0dHero6Ag/DwaDvTLPvqa+sTliWygk1TftUEVJXrfjipJr4xlzq64XPXuqS1ABgNTxNKjs27dPhw8fVm5ubpftubm5eu+99yL2r62tVU1NTW9Nr8/a1toedfv21rYex2Ndf+tpzK26XvTsqS4AIHVM3Ewbr+rqagUCgfDD7/d7PaW0VJw7KOr2otzsHseTHXOrrsW1AABSx9OgcuKJJ+qYY45Ra2trl+2tra3Ky4u8fJ6VlSWfz9flgcRVlo+S43Td5jhSVdnIHseTHXOrrsW1AABSx8TNtFOmTNFjjz0m6cubaQsLC3XTTTdxM62LGra0qL5ph7a3tqkoN1tVZSN1wZGfaIkxnuyYW3UtrgUAEFsi79+eB5Xly5dr9uzZeuKJJzRlyhTV1dXpD3/4g957772Ie1eORFABACD9pM2nfiTpiiuu0CeffKL/+7//U0tLi0pLS7Vy5coeQwoAAOj7PL+icjS4ogIAQPpJ5P07rT71AwAAMgtBBQAAmEVQAQAAZhFUAACAWQQVAABgFkEFAACYRVABAABmEVQAAIBZBBUAAGCW539C/2h89Ud1g8GgxzMBAADx+up9O54/jp/WQaWtrU2SVFBQ4PFMAABAotra2pSTk9PtPmn9XT+dnZ3avXu3srOz5TiO19OBy4LBoAoKCuT3+/luJ6CP4fzOLKFQSG1tbRo+fLj69ev+LpS0vqLSr18/5efnez0N9DKfz8c/ZEAfxfmdOXq6kvIVbqYFAABmEVQAAIBZBBWkjaysLC1YsEBZWVleTwVAinF+I5a0vpkWAAD0bVxRAQAAZhFUAACAWQQVAABgFkEFAACYRVBB2li0aJFGjBihgQMHaurUqVqzZo3XUwJwlF599VXNnDlTw4cPl+M4eu6557yeEowhqCAtLF++XHPnztWCBQv01ltvacKECaqoqNDevXu9nhqAo3Dw4EFNmDBBixYt8noqMIqPJyMtTJ06VZMnT9bjjz8u6cvveSooKNCcOXM0f/58j2cHIBUcx9GKFSt06aWXej0VGMIVFZh36NAhrV+/Xueff354W79+/XT++efr9ddf93BmAAC3EVRg3r59+3T48GHl5uZ22Z6bm6uWlhaPZgUA6A0EFQAAYBZBBeadeOKJOuaYY9Ta2tple2trq/Ly8jyaFQCgNxBUYN6AAQM0adIkvfLKK+FtnZ2deuWVVzRt2jQPZwYAcFt/rycAxGPu3LmaPXu2zjjjDE2ZMkV1dXU6ePCgrrvuOq+nBuAotLe3q7m5Ofz8ww8/1MaNGzVkyBAVFhZ6ODNYwceTkTYef/xxPfTQQ2ppaVFpaakeffRRTZ061etpATgKTU1NKi8vj9g+e/ZsLV26tPcnBHMIKgAAwCzuUQEAAGYRVAAAgFkEFQAAYBZBBQAAmEVQAQAAZhFUAACAWQQVAABgFkEFAACYRVABYNo999yj0tJSr6cBwCMEFQCuamlp0Zw5c3TqqacqKytLBQUFmjlzZpcvmQSAWPhSQgCu2blzp6ZPn67BgwfroYce0rhx4/T555+roaFBVVVVeu+993plHp9//rmOPfbYXukFILW4ogLANZWVlXIcR2vWrNH3v/99FRcXq6SkRHPnztUbb7whSdq1a5cuueQSDRo0SD6fT5dffrlaW1tj1uzs7NQvf/lL5efnKysrS6WlpVq5cmV4fOfOnXIcR8uXL9e5556rgQMH6umnn3Z9rQDcQVAB4Ir9+/dr5cqVqqqq0vHHHx8xPnjwYHV2duqSSy7R/v37tWrVKr388sv64IMPdMUVV8Ss+8gjj+g3v/mNfv3rX+vtt99WRUWFLr74Ym3fvr3LfvPnz9ctt9yid999VxUVFSlfH4Dewa9+ALiiublZoVBIp512Wsx9XnnlFW3evFkffvihCgoKJElPPfWUSkpKtHbtWk2ePDnimF//+teaN2+errzySknSr371KzU2Nqqurk6LFi0K73frrbdq1qxZKV4VgN7GFRUArgiFQj3u8+6776qgoCAcUiRpzJgxGjx4sN59992I/YPBoHbv3q3p06d32T59+vSI/c8444wkZw7AEoIKAFcUFRXJcZxeu2H2SNF+3QQg/RBUALhiyJAhqqio0KJFi3Tw4MGI8QMHDuib3/ym/H6//H5/ePvWrVt14MABjRkzJuIYn8+n4cOHa/Xq1V22r169Our+ANIf96gAcM2iRYs0ffp0TZkyRb/85S81fvx4ffHFF3r55Ze1ePFibd26VePGjdPVV1+turo6ffHFF6qsrNS5554b81c3P/vZz7RgwQKNHDlSpaWlevLJJ7Vx40Y+2QP0UQQVAK459dRT9dZbb+n+++/X7bffrj179mjo0KGaNGmSFi9eLMdx9Je//EVz5szROeeco379+uk73/mOHnvssZg1b775ZgUCAd1+++3au3evxowZo+eff15FRUW9uDIAvcUJxXPHGwAAgAe4RwUAAJhFUAEAAGYRVAAAgFkEFQAAYBZBBQAAmEVQAQAAZhFUAACAWQQVAABgFkEFAACYRVABAABmEVQAAIBZ/w++gKrkHrASLAAAAABJRU5ErkJggg==", "text/plain": [ "
" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "sns.swarmplot(x=\"Color\", y=\"Item Size\", data=new_pumpkins)" ] }, { "cell_type": "markdown", "id": "d4fba30f", "metadata": {}, "source": [ "### Violin plot\n", "\n", "A 'violin' type plot is useful as you can easily visualize the way that data in the two categories is distributed. Violin plots don't work so well with smaller datasets as the distribution is displayed more 'smoothly'.\n", "\n", "1. As parameters `x=Color`, `kind=\"violin\"` and call `catplot()`:" ] }, { "cell_type": "code", "execution_count": 7, "id": "a2a2c9a6", "metadata": { "attributes": { "classes": [ "code-cell" ], "id": "" } }, "outputs": [ { "data": { "text/plain": [ "" ] }, "execution_count": 7, "metadata": {}, "output_type": "execute_result" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAekAAAHpCAYAAACmzsSXAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8o6BhiAAAACXBIWXMAAA9hAAAPYQGoP6dpAABvFElEQVR4nO3dd3wUdf7H8dfM1vRAEkKAUKX3rnAKosJhx+55Z7k79awI6CnqKehPsN7hnZztPL2zeyrWE6yAh6L03ltCSUJCetk28/tjs4uRlkB2Z2b383w89qEkm53Pbjb7nu93vkXRdV1HCCGEEKajGl2AEEIIIQ5PQloIIYQwKQlpIYQQwqQkpIUQQgiTkpAWQgghTEpCWgghhDApCWkhhBDCpOIqpHVdp6KiApkaLoQQwgriKqQrKytJS0ujsrLS6FKEEEKIY4qrkBZCCCGsREJaCCGEMCkJaSGEEMKkJKSFEEIIk5KQFkIIIUxKQloIIYQwKQlpIYQQwqQkpIUQQgiTkpAWQgghTEpCWgghhDApCWkhhBDCpCSkhRBCCJOSkBZCCCFMSkJaCCGEMCkJaSGEEMKkJKSFEEIIk5KQFkIIIUzKbnQBQgghmofH42H//v2HfL1169bY7fJxb0XyWxNCiBjg9Xr5zW9+Q1FR0SHf6969O88//7wBVYkTJd3dQggRA7Zt20ZRUREKOol2LXwD2LRpEyUlJQZXKI6HtKSFECIGbN68GYC+LX3cOaAy/PWpP6Sxp9rOli1byMjIMKo8cZykJS2EEDFg69atAHRI8Tf4eofkAHAwxIW1SEgLIUQM2LhxIwAdUgINvh4K7dD3hbVISAshhMVVV1ezbds2AE5Ka9iS7lr/77Vr16JpWtRrEydGQloIISxu/fr1aJpGljtAS1fDIO6Y4sep6lRUVJCfn29QheJ4WSakO3bsiKIoh9xuueUWo0sTQghDrV69GoBu6f5DvmdXoUuqv8H9hHVYJqSXLFnCvn37wrcvvvgCgEsvvdTgyoQQwljLli0DoHu677DfD309dD9hHZaZgpWVldXg348++ihdunRh1KhRR/wZj8eDx+MJ/7uioiJi9QkhhBEqKirCg8L6tjx8SPfN8PHBzmBI+/1+WX3MQizTkv4pr9fLa6+9xm9/+1sURTni/WbOnElaWlr4lpubG8UqhRAi8pYtW4amabRN8pPhPvzAsM4pfhLtGpWVlWzatCnKFYoTYcmQ/uCDDygrK+Paa6896v2mTp1KeXl5+CaDJoQQsWbx4sUA9DlCKxrAph78fuj+whosGdIvvfQS48ePp02bNke9n8vlIjU1tcFNCCFihc/nY9GiRQAMzvQe9b4D67//7bffRrwu0XwsF9K7du3iyy+/5Pe//73RpQghhKFWrFhBVVUVqQ7tsCO7f2pgpg+borNz50527twZnQLFCbNcSL/88su0atWKc845x+hShBDCUAsWLABgSCsv6pGH5wCQaNfDXd4LFy6MdGmimVhqiJ+mabz88stcc801MjoxBuzdu5cZM2ZQVVV1zPv27NmTu+66C1W13HmlEBHh8XjCIT00y3OMewcNa+VlVYmTL774gt/85jdHHXgrzMFSSffll1+Sl5fHb3/7W6NLEc3g+eefZ+3atY26786dOxk+fDijR4+ObFFCWMSiRYuoqqqipStAzxZH7+oOGZLl4V+bksjPz2f9+vX07t07wlWKE2WpkB47diy6rhtdhmgG27dvD7cCaruMRrcnHPG+9tKdOIs28K9//YvTTjtNWtNCAJ999hkAv8jxHLOrOyTBDkNbeVhU4Oazzz6TkLYA+bQThnjllVcA8LXoiL9lZwKpOUe8edoOQrc52bFjh1xLEwIoLCwMrx52auvGdXWHnJYTvP/XX39NTU1Ns9cmmpeEtIi6TZs2sXDhQnTA23bgsX/A7sKbHTzjf/nll/H7G9e1J0Ss+vDDD9E0jZ7pPrITm7azVfd0P9kJAWpqasLLKwvzkpAWUeX3+3nqqaeC/9+yC1pCi0b9nDe7N5rdza5du3j77bcjWaIQplZXV8cnn3wCwNjc2ib/vKrAWe3qAHjvvfdk+0qTk5AWUTVnzhw2b96MbnPiaT+08T9od+LJHQYEu8p3794doQqFMLcvv/ySiooKMt0BBmYeeZWxozk1x4PbppGXl8fSpUubuULRnCSkRdQUFBTw0ksvAeDJHYruSGzSz/szuuBPbYPP5+PPf/6zDCIUcScQCPDOO+8AwdZwYweM/VyCXQ9fm37rrbeaqzwRARLSIioCgQCPPfYYdXV1+JOz8WV2a/qDKAp1HUagKzaWL1/OBx980Ox1CmFmCxcuJC8vjyS7xug2TRsw9nO/zK3DpugsX76cdevWNVOForlJSIuoeOWVV1ixYgW6aqeu4y/gOBdR0N2peNoNAWD23/8e3qJPiFinaRqvvvoqAGNz60iwn1hPUmaCxsj6keGhxxXmIyEtIu6HH34IfwjUdRyJnpB2Qo/ny+6FL709fp+PadOmUVlZ2RxlCmFqixYtYvv27bhtOmPrB36dqPM61KKgs3jxYjnhNSkJaRFRRUVFPPLIIwB4s3rgz+hy4g+qKNR1OhXNlUJBQQGPPvqojFAVMc3v9/OPf/wDgLHtaklyNM94jOxEjRGtg7tjvfDCCzLOw4QkpEXEVFdXM3XqVCoqKggkZuBpP6z5HtzuorbL6eiKyqJFi8IfYELEorlz57Jr1y6SHRpnd2ieVnTIRZ1qsNdfm16yZEmzPrY4cRLSIiL8fj8PPvgg27ZtQ7MnUHvSGFCbdxVaLSmTuo4jAXjjjTf48MMPm/XxhTCDurq68Ap953esJfEEr0X/XFaCxhn13efPP/+89EqZjIS0aHa6rvPkk0+ydOlSdNVObbez0F0pETmWP7MrnraDAHj66af57rvvInIcIYzy5ptvUlxcTKY7wBltm7cVHRIMf41t27aF1wQX5iAhLZrdyy+/zNy5c9FRqO1yOlpSZkSP583pjzezG5qmMf2hh2Q6iYgZe/bs4Y033gDgipNqcEToEzvFoXNBx+DqZS+88AIVFRWROZBoMglp0azeeOMN/v3vfwPg6XAKgfTcyB9UUfB0GIE/tS2eujr++Mc/snnz5sgfV4gI0nWdv/3tb/h8Pnq38DI0yxvR453Vro62SX7Ky8vDiw4J40lIi2bz7rvv8sILLwDgaTsYX6se0Tu4qlJ70hj8ya2orq7mzjvvZPv27dE7vhDNbNGiRSxevBibovObbtXHu7RAo9lVuKZbNQAfffSRTMkyCQlp0Sw++ugjnnnmGQA8bQbgbdM/+kXYHNR2G0sgKZOKigqmTJnCrl27ol+HECeosrKSWbNmATC+fR1tkqIzmKtHCz8jsj3ous7jjz+Oz3d8a4OL5iMhLU7Yf//7X/785z8D4GndF2+bRmw/GSk2JzXdxhFIbElpaSlTpkwhPz/fuHqEOA6zZ8+muLiY1okBLuwY3T2ff9W1mhSHxvbt23nttdeiemxxKAlpcUI+/vhjHn/8cQC8rXrhbTfkuJf8bDZ2F7XdfkkgoQXFxcXccccd0qIWlvHDDz8wd+5cFHR+36MKpy26x0916lzTPdjt/dprr7Fly5boFiAakJAWx+2DDz4I7w3tze6Fp/1w4wO6nu5wU9s9GNQlJSXccccd7Nixw+iyhDiq8vJynnjiCSC4Pne3dL8hdQxr5WVolodAIMCjjz6Kx3Nim3mI4ychLY7Le++9F75m5s3ugyfXPAEdojsSqO0+Ptz1PWnSJBlMJkxL13WeeOKJcDf3JZ2j2839c1d3rybVEZw7HRoQKqJPQlo02X/+8x/+9re/AcFr0J7coaYL6BDd4aam+3gCiRmUlZVxxx13SPedMKWPPvqI//3vf9gUnZt7V+KKcjf3z6U5da7vVQUET8q///57YwuKUxLSokneeustZs+eDYAnp785rkEfi91FTfdfhkd9T54yReZRC1PZsWNH+O/qsi41dEwJGFxRUP8MH+Nyg4ucPProoxQXFxtcUfyRkBaN9vrrr/Pcc88B9dOs2g4yf0CH2F3UdPslgaQsKisqmDx5sswDFaZQVVXFAw88gNfrpW9LL+NyI7P05/G6rEsN7ZODi5xMmzZNpmVFmYS0aJRXX32VF198EQBP20HWCugQu5Oa7uMIJLeiqqqKKVOmsGHDBqOrEnFM0zRmzpxJfn4+LV0BbuxVhWqyPyuHCrf2qSTBprN27VqeffZZo0uKKxLS4pjeeuut8DKBnraD8bYZYGxBJ6J+HrU/OZvq6mruuusuuUYtDPPGG2+waNEi7IrO7X0rSXWacz/n1okaf+hdCcD777/P559/bnBF8UNCWhzVBx98cLCLu+1gY1YSa271K5P561vUd911l8yjFlH3/fffh09+r+5eTedUc1yHPpKBmb7wwipPPvmkXC6KEglpcURz584NT7Py5PSLjYAOsTmo7To2POp7ypQp7Nmzx+iqRJzYsmUL06dPR9d1RrepY3Qba8xDvrBTLf0zvHi9Xu69914KCwuNLinmSUiLw1qwYEHDlcTaDja4ogiwO6ntNo5AQjrFxcVMnjyZ/fv3G12ViHH79+9n6tSp1NXV0auFj6vrN7WwAlWBm3tXkZvk58CBA9xzzz1UV1unfiuSkBaH2LBhA4888giapuHN7GaqlcSam+5wU9vtl2iuVAoLC7nvvvuoqzPX6FoRO2pqarj33nspLi4mJ9HPbX0qsVvsUzjBrjOpfyVpTo0dO3Ywbdo0/H5jVkaLBxZ7e4hIKyoq4r777sPr9eJPy8XTcUTMBnSI7kykpttYNLubzZs3M2PGDDQtOrsOifjh9Xp54IEH2LJlCykOjSn9K0lymHOg2LFkujUm9avAqeosWbKEJ554Qv5mIkRCWoSFzvIPHDhAIKEFtV1GgRIfbxHdnUrdSWPQFZWFCxfyz3/+0+iSRAwJBALMmDGDpUuX4lR1JvWrpFWCtUOtc2qAW/pUoio68+bN4+9//zu6bs2TDjOLj09gcUyh/WO3bt2KZndT2/VMsDmNLiuqAimtqes4Egju/vPNN98YXJGIBbquM2vWLObPn49N0bmjXyUnpcVG9/DATB/X9wguHfruu+/K1pYRICEtAPj888+ZP38+uqJSe9IZ6K4Uo0syhD+zK97WfQH485//LMsgihOi6zovvPACH3/8MQo6N/Wuok/L2Fqxa2SOl6u6BgePvfTSS7z//vsGVxRbJKQFRUVFPP3XvwLgbTMQLSXb4IqM5Wk7mEBiBpWVlTz++OPShSeOi67r/OMf/+DNN98E4Nru1Qxr5TW4qsgYl1vHBfVzqP/6178yZ84cgyuKHRLScU7TNB577DFqqqsJJGXhzelrdEnGU1XqOp+Grtj48ccf+eSTT4yuSFhMKKBff/11AH7TrZrT21pjLvTxuqhTLee0D27G8fTTT0tQNxMJ6Tg3b948li1bhq7aqO18WtwMFDsWLaEFnnbBueGzZ8+mpKTE4IqEVRwuoM9qF/vT+hQluBmHBHXzkk/kOObz+fjXv/4FBLu5dXeawRWZiy+7N4GkTOrq6njrrbeMLkdYgKZpPPPMM+GA/nXX+AjokMMFtfztnBhLhfSePXv49a9/TUZGBgkJCfTt25elS5caXZZlzZ07l4KCAjR7At5WvYwux3wUBU/bQQB8+OGHMohMHJXf7+fxxx/nvffeA4It6LEm23YyGkJBfW6HYFA/99xzvPjiizK24zhZJqRLS0sZOXIkDoeDzz77jPXr1/PUU0/RokULo0uzJK/Xy6uvvhr8/5x+YLMbXBGg6xDwBW8m+YMOpLYlkNwKr9fLG2+8YXQ5wqQ8Hg/Tpk1j7ty5qIrODT0rDWtB6zp4AsGbUX9GoaC+rEtw1Pfrr7/OX/7yF1nw5DiY4JO5cR577DFyc3N5+eWXw1/r1KnTUX/G4/Hg8RwcrFFRURGx+qxmwYIFFBUVoTkS8LXqbnQ5QZqflOXBE4fKQb8Bm8Pgggi2ptsMJHHzPD7++GN++9vfkpycbHRVwkSqq6v505/+xPLly3GoOjf3rmRwlnHTrLwaXL8gA4AXR5XgshlWCud2qCPJrvPKpiQ++ugjqqqquOeee3A642sNhhNhmZb0Rx99xJAhQ7j00ktp1aoVAwcO5MUXXzzqz8ycOZO0tLTwLTc3N0rVml9ooQ5fVndQLXOuZohAahsC7jR8Ph/fffed0eUIEykqKuL2229n+fLluG06U/pXGBrQZnR6Ww839a7Cpuh8/fXX3HXXXVRWVhpdlmVYJqS3b9/Os88+S9euXZk3bx433XQTt99+e3jg0+FMnTqV8vLy8C0/Pz+KFZtXVVUVS5YsAcDf4ui9EQJQFPwtg6/TggULDC5GmMXWrVu5+eab2bZtG2lOjakDy+nVIjZWEmtuJ2d7mdK/ErdNZ9WqVdx6663s27fP6LIswTIhrWkagwYNYsaMGQwcOJAbbriB66+/nueee+6IP+NyuUhNTW1wE/Ddd9/h8/kIuNPREtKNLscS/C06AvDjjz/K1nyCJUuWcPvtt1NcXEzbJD8PDi6nU2rA6LJMrU9LH/cPLqeFK8CuXbu4+eab2bRpk9FlmZ5lQjonJ4devRqOQO7Zsyd5eXkGVWRdB1vRHWJ+h6vmoiW0QHOl4vP5WLVqldHlCAN9+OGH3H333dTU1NAz3cf9gyrItPhmGdHSPjnAg4MryE32U1paysSJt7Nw4UKjyzI1y4T0yJEjDznr2rx5Mx06dDCoIuvasmULAIHkVgZXYiGKQiA5Czj4+on44vf7+ctf/hIepTwi28OdAyosu92kUVq6Ne4fVEGfll7q6jw88MAD/Pvf/5YpWkdgmZCeNGkSixcvZsaMGWzdupU33niDF154gVtuucXo0izF4/GEex+0xJYGV2MtgcTgiFkJ6fhTXl7OXXfdxYcffoiCzqWdq7mxVxUOy3yCmkuCXWdKv0rGtgvOpf7nP//JQw89RF1d/M0rPxbLvMWGDh3KnDlzePPNN+nTpw8PP/wws2bN4qqrrjK6NEvZsWMHmqah2d3ojkSjy7EUTUI6Lu3YsYObbrqJFStW4LYFt5o8r2OdXCk6QTYVft2tht/1CI78/uabb7j99tspKioyujRTsdTcm3PPPZdzzz3X6DIsbffu3QDBAWPyKdMkoUF2hYWF+Hw+HA4TzOMWEfXNN9/w2GOPUVdXR5Y7wKR+lbRLlgFizWlUGw+tEwP8dU0Kmzdv5oYbbuCBBx5g0KBBRpdmCpZpSYvmEdooQlrRTafb3ej1JzalpaUGVyMiye/38/e//53p06dTV1dHrxZepg0pl4COkO7pfqYPKadDsp+ysjLuvPNO3nrrLblOjYR03JGQPgGKgm4Pvm6yK1bsKi0t5c477+Sdd94B4Jz2tdzVv5IUpwRGJGUmaPxpcDm/aF2Hpmk899xzTJ8+nZqaGqNLM5SEdJw5cOAAAJozweBKrEmvf90kpGPTunXruOGGG1i5ciVum85tfSq5/KQabPJJGRVOG1zfs5prugWvU8+fP5+bbrqJXbt2GV2aYeStF2fKy8uBYNetaLrQ6xZ6HUVs0HWd//znP9x+++3s37+fnMQADw4pZ2grr9GlxR1FgTPaebh3UAUtnBq7du3ixhtv5MsvvzS6NENISMeZ0Jq5ut1lcCXWpNuCr5usPRw7qqqqePDBB5k9ezaBQIBhrTxMG1JG2yS5/mykrml+HhpWRq8WPurq6vi///s//vKXv+D1xteJk4R0nAmHi012oTkeuj34ulVVVRlciWgOW7du5cYbb2ThwoXYFJ3fdKvmlt5VJFhq3kvsSnPq/HFABRd0DF6X/vDDD+Nu3W8J6TgjLekTE3rdZNtTa9N1nU8++YSbbrqJPXv2kOEKcP/gCs5qJ/OfzUZV4OLOtdzZv4Jkh8bmzZu5/vrr+d///md0aVEhIR1HfD5fOFw0hwwcOx56/esWGoAnrKempoZHHnmEJ598Ep/PR/8MLw8NK6dLquxgZWb9Mnw8PLScLqk+qqqquP/++5k9ezY+X2xvDSohHUdCwaIrKtikJX08QlPXZHS3NW3fvj08CElVdC7rUs2kfpWkyPrblpDh1rhvUAW/zA0uJxoa7FdQUGBwZZEjIR1HiouLgfqgkT694xLqgZCQtp7PPvuMm266ifz8fFq4AkwdWMG5HepQ5U/BUuwq/KprDRP7VpBo19iwYQPXX3893333ndGlRYSEdBwJrYmrO2Uhk+OlO5OAYEjHejdbrKirq+PRRx/lsccew+Px0Lell4eHltM9Xbq3rWxwVrD7u3Oqj8rKSu69916ef/55/P7Y+r1KSMeR7du3AxBwpxtbiIXpjkR0m4NAIEB+fr7R5YhjyMvL4+abb2bu3Lko6FzSuYYp/StJldXDYkJWQnDby9BuWm+++SaTJ08O9xrGAgnpOBIKadmi8gQoCoGEFsDB11OY09dff82NN97I9u3bSXNq3D2wgvM71kr3doyx1++mdWufStw2ndWrV/P73/+epUuXGl1as5CQjiPbtm0DQKsPGXF8tITgSU7o9RTm4vf7eeaZZ3jooYeora2lR7qPh4eW0atFbHWDioaGtfIyfWgZufWbdNx11128/vrrlt+kQ0I6Tuzfv5+CggJ0ICAt6ROiJQX3lV67dq3BlYifKykpYcqUKbz77rsAnNuhlrsHVJDusvYHtWicnESNBweXc1pOHbqu8+KLL/LAAw9QXV1tdGnHTUI6TixZsgQALSkTZCGTE+JPbQMEN2OQlcfMY926ddx4442sWrUKt01nYt8KLusim2PEG6cNft+zmuu6V2FXdL799ltLb9Ihb984EQppf1o7gyuxPt2VQsCdhqZpLF++3OhyBPDxxx8zceJEiouLaZPoZ/qQMgZnyej7eHZ6Ww/3DaqghStAXl4ef/jDH/j222+NLqvJJKTjgN/vDw+i8Ke2Nbia2BBIC76OixcvNriS+BYIBPjb3/7GU089hd/vZ2iWhweHlJOTpBldmjCBLml+HhpaTo90H7W1tfzpT3/ijTfesNR1agnpOPDjjz9SWVmJZnejJWcZXU5M8Ke3B2DhwoV4PB6Dq4lPNTU13H///bz33nsAXNyphlv7yOYYoqE0p87dAyo4s20dAC+88AJPPPGEZdY5kJCOA3PnzgXAn9EFFPmVN4dASg6aM4mqqqqYXenIzIqKirjtttv4/vvvcag6t/Su5IJOtbKQnjgsmwpXd6/m112rUdD573//y1133WWJjXLkEzvGlZeXh0PEl9nV4GpiiKLgyzgJOHgSJKJj+/bt3HTTTWzbto00p8a9AysYnh1fewyL4zM2t47J/YLzqVeuXMktt9wSXonRrCSkY9yXX36J3+8nkJghi5g0M19mMKSXLFli+j/0WLFx40buuGMiJSUltEvy8+Dgcrqkyfxn0Xj9M338aXA5Ga7gqoG33XYbu3fvNrqsI5KQjmGapjFnzhwAfFndDK4m9ujuNPwprdE0jY8++sjocmLe6tWrmTx5MhUVlXRO9XHvoAoyE2SAmGi63OTg/uHZCQEKCwuZOHEiO3fuNLqsw5KQjmFLlixh9+7d6DZnuGtWNC9fdi8APvroIxlAFkFLly7lrrvuoqamhh7pPu4eUEGybC8pTkBw28ty2iX5KSkp4fbbb2fz5s1Gl3UICekYFhr16svsCjaHwdXEJn96ezRnMhUVFXz99ddGlxOT1q9fz3333YfH46FfSy9T+lfICG7RLNJdOlMHVdApxU9FRQV33XWX6bq+JaRjVH5+Pj/++CM64G3V0+hyYpeihl/f9957z1LzL61gz5493HvvveGAntivEpfN6KpELElx6NwzsIKOKX7Ky8u5++67KSsrM7qsMAnpGPXBBx8AEEjPRXenGltMjPNldUNXbGzdulXW825GZWVl4Q/Mjil+bu1TiUM+sUQEJNh1JverINMdCJ8Y1tXVGV0WICEdk2pqavjss88A8LbqZXA1ccDuwpfRBYD333/f4GJig9/v5/7772f37t1kugNM7leBW7q4RQSlu3Tu7F9Bkl1j/fr1zJgxwxQ9YxLSMejzzz+npqaGgDuNQP1mECKyfNnBLu+FCxfG1IbzRnnttddYu3YtiXaNKf0rZRcrERVtkjTu6FeJXdFZuHChKdZAkJCOQaE3li+rB7IEU3RoiRkEklsRCAT48ssvjS7H0rZs2cKrr74KwLXdq2mbFDC4IhFPuqf7ubhzDQDPPPM3w9dAkJCOMbt372bjxo3oKPgzOhtdTlwJTXOTUd7Hz+fz8eijjxIIBBiS5WF4K1lJTETf+PZ1dEn1UV1dwxNPPGFot7eEdIz55ptvAAik5qA7EgyuJr74W3RAR2Hz5s3k5+cbXY4lzZkzh23btpHi0Li2e7V0BAlDqApc37MKh6qzZMkSFixYYFwthh1ZREQopH0tpRUdbbojgUBacAxA6PcgGs/v94fn9l/SuYZUp1yHFsZpk6RxdvtaAN59913D6pCQjiGVlZVs374dgED9VooiuvzpHQBYs2aNwZVYz3fffUdhYSHJDo2RrWX1NmG8M9rWYVN01q5dy8aNGw2pQUI6hoSWtNNcyegOt8HVxKdAUiYAmzZtMsX0DSsJtaJPb1OHUxYsESaQ7tLD4yJC789ok5COIVu2bAEgkJhpcCXxS0tIR1cUKioqDB8VaiXl5eWsWrUKgDFtpRUtzOPMdsFFTf73v/+hadHf0EVCOoZs3boVCE4HshRdQ/FUoniqwl9SPFUonkrQLbbLkWpHS2gBHDxpEscW2oEo0x0gw22x37lJBDTYX6tSXHfwY724TmV/rUpAXtLj1jHFj13Rqa2tpbCwMOrHt0xIT5s2DUVRGtx69OhhdFmmUlsbHOSg210GV9I0irea5NX/IXndnPDXktfNIXn1f1C81QZWdnxCr79ZlhW0glBIy5zo43fAozLl+xZM/aFF+GtTf2jBlO9bcMBjmY9607GrkJMYfF8asZ2lpX5zvXv3Zt++feHb//73P6NLEkI0gx07dgDQTkJamFDo5DH0Po0mS62Ga7fbad26daPv7/F4GuzxW1FREYmyhBAnKBAIfgg6VBls1xzOPfdcLrvsMt555x0+/fRTyjwKWbJswnFz2ILvy9D7NJos1ZLesmULbdq0oXPnzlx11VXk5eUd9f4zZ84kLS0tfMvNzY1Spcaw2eqHxGrSGjGSUv+HHP59iGPKzAwOdiyVbtlmcdlll9G+fXsuu+wydF2nuE7eiyeirP59GXqfRpNl/iKGDx/OK6+8wty5c3n22WfZsWMHp556KpWVlUf8malTp1JeXh6+xfoqUJ07BxcwsdXIBg+G0TTU2hLg4O9DHFtGRnCwY5nXMh9JpvbOO++Ql5fHO++8g6IoZLrlxP1EGBnSlunuHj9+fPj/+/Xrx/Dhw+nQoQPvvPMOv/vd7w77My6XC5fLWoOoTkTv3r0BsFXJ1B+jqLUHULQAKSkpMd9z05xatWoFwJ5qG7ou+8KcqE8//ZRPPvkERVHQdV12ETsB3gAU1fdESEu6CdLT0+nWrVt42pGAnj17oigKqqcSxVdrdDlxKXSC1KtXL1TVsn9eUde3b18SEhIorrOxudwybQfTCi2kIwvqnLhl+514AgqtW7emQ4cOUT++ZT9Fqqqq2LZtGzk5OUaXYhrJycl06dIFAPuB6I9CFAdf9379+hlcibUkJCRw+umnA/C/ffHT+yXM79uC4Ptx3Lhxhpx4Wyak77zzThYsWMDOnTv57rvvmDBhAjabjSuvvNLo0kzl3HPPBcBZuB7kLDqq1Opi7FWF2O12xo0bZ3Q5lhN6zX4oclHrl/5uYbz9tSrrDjgADPubtkxI7969myuvvJLu3btz2WWXkZGRweLFi8nKyjK6NFMZO3YsycnJqJ4KbOWxPVDObJyF6wA4/fTTDbl2ZXX9+vUjNzeXuoDCu9tlvpAw3htbktBRGDRoEG3atDGkBsuE9FtvvcXevXvxeDzs3r2bt956K9y1Kw5KTEw82Jret0Za01GieKrCXd2XXHKJwdVYk6IoTJw4EYAvd7vZJtemhYGW7neyrNiJzWbj1ltvNawOy4S0aLyLLroIh8MR7HqVa9NR4cr/AUXXGDBgAN27dze6HMsaMmQIY8eORUfhnxuT8Mua08IANX6FVzclAXDllVcaOp1SQjoGtWrViquuugoIhgcBr8EVxTZbWT6O0l2oqsptt91mdDmWd/PNN5Oamkp+tZ23tyUaXY6IM5oOL21IotSr0q5dO37zm98YWo+EdIy68soradu2LaqvFtfu5UaXE7sCftx53wPBbm65BHPi0tPTmTJlCgDz8hP4PF/2RhfR8862RJbsd2G32/njH/9o+FobEtIxyuVyMWnSJAAcRRtQK6O/xVo8cO1ZjuqpIisri2uvvdbocmLGqFGjuP766wF4fUsiK4odBlck4sHXe1z8Ny84aPGPf/yjKaZSSkjHsCFDhnDWWWehoJOwfQH4Pcf+IdFotvLdOAvXAjBp0iQSE6Vrtjn96le/4pxzzkFHYfbaFBlIJiJqRbGDf28OXoe+7rrrGDt2rMEVBUlIx7g77riDnJwcVG8V7p2LZLR3M1F8tbi3LwTgwgsvZMSIEQZXFHsURWHSpEkMHToUr6bw2MpUNpRKUIvm90Ohk7+uSUHTFcaNG8fVV19tdElhEtIxLikpiQceeACbzYajdCeO4s1Gl2R9uo57+0JUfx2dO3fmpptuMrqimGW325k+fTqDBg2iLqDw5KpU6foWzWrBXhd/X5dMQFcYM2YMd911F4qJFo+XkI4DPXv25Pe//z0Arl2LUWsOGFyRtTn3rcZesQeXy8UDDzxg+MCSWJeYmMjMmTMZOXIkPk3hr2tSWFzoNLosEQM+y3Pz0sZkdBTOO+887rvvPux2c/XWSEjHicsvv5xhw4ah6AEStn4NfpmWdTxsFXtx7gmOlp84cSIdO3Y0tqA44XK5mD59OmeeeSYBXeHZdcl8usstV2/EcQlo8MaWRN7cenAu9OTJk025B7yEdJxQVZX77ruP7OxsVE8F7h0L5fp0Eyneatzb5qOgc/bZZ3P22WcbXVJcsdvt3HvvvVx44YXoKLy9LYnn1yfjla2SRRNU+xSeWp3C3PzgKO7rr7+eG264wVRd3D8lIR1H0tLSmD59OnaHA0dZHo6CtUaXZB2aRsK2b1D9dZx00knh5StFdKmqysSJE5k4cSKqqvJdoYsZK1Ip9ZjzA1aYy75qlenL0lh7wInb7WLatGlcddVVpg1okJCOOz169OC2+nVoXbuXyvzpRnLtWYatqoikpCSmT58u16ENpCgKEyZM4MknnyQ1NYXtFQ4eXJIuU7TEUa0qdjB9WRoFNTays7P529+eYfTo0UaXdUwS0nHo/PPPZ8yYMfXzp+fL/OljsJXl4yxYA8A999xD27ZtDa5IAAwaNIjnnnuejh07UuZV+b/lqczNl+vUoqGABv/ZlsBTq1Op8av06dOH5557jq5duxpdWqNISMchRVGYMmVKcNlQbzXuHd/K9ekjULzVwev3BDcuOfXUUw2uSPxUmzZt+Pvf/87o0aMJ6ApvbEni6TUpVPvM230poueAR2XmilQ+3hVcaOjCCy/kL3/5Cy1atDC4ssaTkI5TSUlJTJs27eD16aINRpdkPrqGe9t8VL+Hbt268Yc//MHoisRhJCYm8uCDD3LHHXfgcNhZXuzkT0vS2FYh3d/xbHWJgz/9mMbmcgeJiYlMmzat/j1irXn2EtJxrGvXrtxcvxCHa/cSlLoKgysyF0fhBuxVhSQkJPDAAw/gdMrcXLNSFIULL7yQ2bP/Tps2bSius/F/y1L5b54bTTqJ4opfg7e3JvLkqlQqfSpdu3blhRdesMT158ORkI5zEyZMYNCgQShaQLq9f0Kpq8C1ZykAN910E+3atTO4ItEY3bp144UXXmDUqFEEdIW3tibxxMoUGf0dJ/bVqDy0LI1P6zfJuOCCC3jmmWcs/fcrIR3nFEXhrrvuwu12Y68qlG5vCC77ueNbFC3AoEGDOO+884yuSDRBcnIy06ZNY8qUKbhcLtaVOrnvx3SW77dWN6doPF0PLu/5px/T2VlpJzU1hYcffphJkyZZfiaGhLQgJycnfL3VtXspirfa4IqM5di/CXtVIW6323Tr+IrGUZTgMo8vvPACXbt2pcqnMmtNKq9sSsIji5/ElCqfwjNrk3lpYzJeTWHQoEG89NI/Y2aQp4S0AILTsvr06YOi+XHVL3sZlwK+8LKfv/vd78jJyTG4IHEiOnTowOzZs7n88ssB+HqPmweWpLGz0nzLP4qmW3fAzn0/prFkvwubzcaNN97Ik08+SVZWltGlNRsJaQEEV3K6+eabAbAXb4nbTTicBWtQ/XW0bduWCy+80OhyRDNwOp3cdNNNPPnkk2RkZLCvxs70pWl8sksGlVmVT4M3tyTy2Mo0Sj02cnNzmT17NldeeSWqGluxFlvPRpyQXr16MXr0aBSC3d7xRvHW4KxfKvWGG26w3FQNcXRDhgzhn//8J6eddhoBXeGdbUnMXJFKca18DFrJ7iob05am8Vn92tvnn38+L7zwAj169DC4ssiQd6do4Pe//z12ux17+W7UqiKjy4kqZ8EaFM1P7969Oe2004wuR0RAaP36u+++m4SEBDaVObh/SRrfF8j0OrPTdfg8382DS9PIr7KTnp7OjBkzmDx5MgkJCUaXFzES0qKBdu3acdZZZwHgLFxvcDVRFPDhKN4MwNVXXy2DxWKYoiiMHz+ef/zjH/Tq1Ysav8qz61N4fn0ytX75vZtRuTe4c9VrW5LwaQonn3wyL730EiNGjDC6tIiTkBaHmDBhAgD20h0o3hqDq4kOR8k2lICPdu3aMXToUKPLEVHQtm1b/vrXv3LNNdegqiqLClz86cc0tspGHaayqtjBfT+ks7rEidPp5Pbbb2fmzJlkZGQYXVpUSEiLQ3Tr1i040lvXcezfZHQ5kafrOIqCvQYTJkyIuYEn4sjsdjvXXXcds2bNIjs7m6I6G/+3PJUPdiTIoDKDeQPw6uZEnlqdSoVPpXPnzjz//PNcdNFFcdXTJZ9G4rBCrWlHyZaYX4VMrS7GVluG2+1m3LhxRpcjDNCvXz/+8Y9/cMYZZ6DpCu/vSOTRFakc8MhHpBH21u/7/MXu4LXmiy++mGeffZZOnToZXFn0yTtQHNaIESNwOp2onirU2lKjy4koe1keAMOHDyc5OdngaoRRUlJSuP/++7n33ntJSEhgY1lwg4ZVJTLKP5oW7XPy4NL08OCwxx57jNtuu83yK4cdLwlpcVgJCQkMHjwYOBhisSr0/EaOHGlwJcJoiqIwduxYXnzxRU466SQqfSpPrUrl7a2J+DWjq4ttngC8uD6J5zek4AmEVg57ieHDhxtdmqEkpMURhULLXhq7Ia3UVWCrLUVVVU4++WSjyxEm0a5dO2bPnh2+7PNpXgKPLE+lpE4+MiNhd5WNB5ak8W2BG1VVue6663jiiSfiZnDY0cg7ThzRKaecAoBaUwx+r8HVRIa9sgCAPn36kJqaanA1wkxcLhcTJ05k+vTpJCUlsa3CwQNL0lhfKqO/m9OPRU6mL0tjX42djIwMnnrqKa655hpsNlm6FSSkxVFkZGSQk5ODAtiq9xtdTkSEFmzp06ePwZUIsxo1ahT/+Mc/6Nq1K5U+lcdWpPJZnjvWx1NGXECDt7Ym8szag93b//jHPxg4cKDRpZmKhLQ4ql69egGxG9Kh5xV6nkIcTk5ODs888wxjx45FR+HNrUnMXpdMnd/oyqypwqvwxKpU/lu/7/MVV1zB448/TosWLQyuzHwkpMVRhUO6KgZDOuALj1zv2bOnwcUIs3O5XEydOpWJEydis9n4scjFw8vSZO3vJsqvsvHgkjTWlzpwu91MmzaNP/zhD9jtchnhcOTdJY6qa9euADE5DUutLUMBWrZsKQNURKMoisKECROYNWsWLVu2JL/azvRlaWyvkOunjbG6xMHDy9Io8dho27Ytf//73xk9erTRZZmahLQ4qtzcXAAUbxVosdW3p9aVA9C+fXuDKxFW07dvX5599lk6d+5MuVdlxvI0lhTJJh1H89VuF39enUJdQKF///7h108cnYS0OKr09HSSk5NRALWuwuhymlUopEMnIkI0RXZ2Nn/7298YNmwYXk3hmbXJ/FcGlB1C0+GNLYn8a3Mymq4wbtw4nnzySZlN0UiWDelHH30URVG44447jC4lpimKEg4xCWkhGkpKSmLGjBlceOGF6Ci8tTWJt7clSlDXC2jwwvpk5tbv/fzb3/6We+65R/ZqbwJLhvSSJUt4/vnn6devn9GlxIXWrVsDoHirDa6kean1zycnJ8fgSoSV2e12Jk6cyE033QTAf/MS+NfmpLjfoMOnwTNrU/iu0IXNZuO+++6TbWCPg+VCuqqqiquuuooXX3zxmMP1PR4PFRUVDW6i6bKysoCDoRZJ5557Lv/+978599xzURQloltlhh47MzMzYscQ8UFRFC6//HLuvPNOFEXh6z1uXlifHLdLiXoC8JdVKSwrduJwOHj44YfD+9SLprFcSN9yyy2cc845nHnmmce878yZM0lLSwvfpFvz+IRCWvFFPqQvu+wy2rdvz2WXXYau66jeqsgcSNdQfMGQDj0/IU7Uueeey/3334/NZuO7Qhez18VfUNf54fGVqawtdeJ2u3nssccYMWKE0WVZlqVC+q233mL58uXMnDmzUfefOnUq5eXl4Vt+fn6EK4xN4ZCOYKs25J133iEvL4933nkHRVHQnJHZlUrx1aGgo6qqLKAgmtUZZ5zBww8/jMPhYNl+Fy9uSI6brm9vAGatSWVLuYOkpCSeeuopBg0aZHRZlmaZ2eP5+flMnDiRL774Arfb3aifcblccbu9WXNKS0sDQPHXRfxYn376KZ988gmKoqDrOrozMSLHCT2XlJQUWSNYNLsRI0bw0EMPcf/99/N9oYsEu8413aqJ5cuxfg1mr0thfamDhIQEnnzySVkkqBlYpiW9bNkyioqKGDRoEHa7HbvdzoIFC/jrX/+K3W4nEAgYXWLMCk2VUPyeiB9Lrx8Wq0d4eGzoucg0EBEpp5xyCvfdd1/4GvU7MTzqW9PhxQ3JrKi/Bj1jxgwJ6GZimZb0GWecwZo1axp87brrrqNHjx7cfffd0hqKoAYhrevEQnMgFNKhXgIhImHMmDHU1NTw5JNP8mleAukujXG5ke+Rira3tybyff0o7unTp8smGc3IMiGdkpJyyE5FSUlJZGRkyA5GEZaSkgKAgh5cdcxm/TmOSiC49WZycmSueQsRcu6551JZWcnzzz/PG1sSaZMYoG+Gz+iyms23+1x8Vj8PeurUqTJIrJlZprtbGMfpPLjcoRIrS4PWP4/Gjm8Q4kRcccUV/PKXv0RHYfa6ZPbVxMZH75ZyOy9vTALg6quvbtSsG9E0lmlJH878+fONLiEuqKqK0+nE6/XGzPrdoZMNGVgookFRFCZPnszu3btZu3Ytf1mdyoODy0lyWPcidUmdytOrU/DrCqeddhrXXnut0SXFpNg4nRMRFwqz2GlJBwcaSkiLaHE6nTz00EO0atWKghob/9qUZNmBZJoOz61LpsKn0qVLF6ZOnYqqSpxEgryqolHCA/Ms+qFyqOATkQ8WEU0tW7Zk2rRpqKrK4iIXiwqsuXPWJ7sS2FQenGr10EMPkZCQYHRJMUs+oUSjhKe4xcDI7qDg85CpeyLaevXqFe4a/vfmZAotdn16W7md93cEQ/mOO+6gbdu2BlcU247r3bFt2zbuv/9+rrzySoqKigD47LPPWLduXbMWJ8wjFGa6Yq0PlCOqfx4S0sIIV111Ff369aMuoPD8euusSOYNwHPrg1tOjhkzhrFjxxpdUsxr8ifuggUL6Nu3Lz/88APvv/8+VVXBtZVXrVrFgw8+2OwFCnPw++uvRcdKS1qRlrQwTmhXqMTERLZWOFiw1xpjIz7elUBhrY3MzEwmTZokO1pFQZND+p577uH//u//+OKLLxpMzRkzZgyLFy9u1uKEOXg8nuDIbkC3WePD5Fh0e/B5yM5owijZ2dlcd911ALyzLZEKr7kDb1+Nyqe7gt3ct912W3j9BBFZTQ7pNWvWMGHChEO+3qpVK4qLi5ulKGEupaWlQH1XdwwsZAKg24Pzo8vKyowtRMS1CRMm0KVLF6r9Ku9si8w69c1B1+Hfm5Lw6wrDhg3jtNNOM7qkuNHkkE5PT2ffvn2HfH3FihUygCBGhUPakRAz3d2aI9giOHDggMGViHhmt9uZNGkSAAv3udlVac7ljVeWOFhXGlyX+/bbb5du7ihqckhfccUV3H333RQUFAS3EtQ0Fi1axJ133snVV18diRqFwUI9JLojdqZZ6D8JabkuLYzUp08fzjjjDADe32G+1rSmw3vbg3VdfPHFtGvXzuCK4kuTQ3rGjBn06NGD3Nxcqqqq6NWrF6eddhojRozg/vvvj0SNwmA7duwAQHOnG1tIM9KdSeiqHZ/Px969e40uR8S5a6+9FlVVWVHsZFuFuRaCXLbfSV6VncTERK688kqjy4k7TQ5pp9PJiy++yPbt2/nkk0947bXX2LhxI6+++qrsRBWjtm/fDkAgoYXBlTQjRUVLSAeCUwqFMFJubi7jxo0D4L3t5umx0nTCc6IvvfRS2TXOAE0O6YULF1JUVERubi5nn302l112GV27dsXn87Fw4cJI1CgMFgoxLbGlwZU0r0BC8PmEegqEMNLVV1+NqqqsPeBkd5U5GjxrDjjYU20nKSmJSy65xOhy4lKTQ3r06NH079//kOlWBw4c4PTTT2+2woQ5lJWVsXv3biD2Qjr0fGQRHmEGOTk5nHrqqQB8sdscu7N9kR+s4+yzz5YpVwY5ruWjrrjiCs444wxeeeWVBl/XrbpavDiiZcuWoes6gYQWMTVwDCCQ2gYILsRTV1dncDVCBAdmASwqcFHlM3YE9b5qldUHnCiKwoUXXmhoLfGsySGtKApTp07l1Vdf5dZbb2Xy5MnhcJZh+bFnyZIlAARSY296neZOQ3Mm4fP5WLVqldHlCEHfvn3p0qULXk3hf/uMXTjo673BVvTJJ58s02sN1OSQDgXyRRddxLfffsu7777L+PHjZVGIGKRpGkuXLgXAnxaDf6SKgr/+5OPHH380uBghgg2d8847D4DvCo0LaU2HxfXHD9UjjHFCuyUMHDiQH3/8kbKysvA8PxE71qxZQ3FxMbrqIJCSbXQ5ERFIzwVg/vz5Ml9amMLo0aOx2WzsrLSzr9qYDW3Wlzoo96qkpqYydOhQQ2oQQU1+B1xzzTUN9g5t3bo1CxYs4IwzzqB9+/bNWpww1rx58wDwtewEqrnmbjYXf1o7dJuLkpISli9fbnQ5QpCenh4Oxu8Nak1/Xxjcl2HUqFE4HLGxFLBVNTmkX3755UNG+blcLv71r3/JVJYY4vF4mD9/PgD+zJOMLSaSVBu+jM7AwZMSIYw2ZswYAJbudx7jns1P02F5/XFDdQjjNKp5tHr1avr06YOqqqxevfqo9+3Xr1+zFCaMtXDhQmpqatCcyQSSY7OrO8SXcRLOog18++23VFZWylQTYbjhw4ejqiq7q+2U1KlkuLWoHXtbhZ1qv0pycjJ9+/aN2nHF4TUqpAcMGEBBQQGtWrViwIABKIrSYLpV6N+Kosh1vRjx/vvvA+DL6hYzm2ociZaUSSChBZ7aUv773/9y+eWXG12SiHNpaWn06NGD9evXs7rEweltPVE79uqSYPf20KFDsdtj8zKXlTTqN7Bjxw6ysrLC/y9i27p169iwYQO6ouLL6m50OZGnKPiye2HbuYg5c+ZwySWXyBK3wnDDhw9n/fr1rDkQ3ZBeUxLs6h42bFjUjimOrFEh3aFDh8P+v4hN7733HgD+jC4xt4DJkfgyuuDcvZSCggK+++678MpPQhhlyJAhvPzyy2wqc6Dr0enQqvPDzvolSQcPHhz5A4pjavTAsc2bNx8yl/Srr77i9NNPZ9iwYcyYMaPZixPRV1hYyIIFCwDwZvcyuJooUu3hXoN33nnH4GKEgK5du+JwOKj0qRTWRmcq1vYKO5qukJ2dTatWraJyTHF0jf7N33333XzyySfhf+/YsYPzzjsPp9PJKaecwsyZM5k1a1YkahRR9J///IdAIIA/JQctMcPocqLK16oXuqKyZs0aWc9bGM7pdNK9e/DEcUt5dKZBhY7Tu3fvqBxPHFujQ3rp0qWMHz8+/O/XX3+dbt26MW/ePJ5++mlmzZp1yFrewloqKirCJ2LenPgbpa87E/FldAHgzTffNLgaIQ6GZbT2mA4dR0LaPBod0sXFxbRr1y7872+++abBcnGjR49m586dzVqciK4PPviAuro6Aoktw5tPxBtf6+CUk0WLFrFr1y6DqxHxrmvXrgDkR2nrytBxQscVxmt0SLds2ZJ9+/YBB9d0Pvnkk8Pf93q9sguWhXk8HubMmQOAt3XfmJ92dSRaQjq+9Pbous67775rdDkiznXuHFxoZ0+1jUh/vNb4FUo8wZDu1KlTZA8mGq3RIT169Ggefvhh8vPzmTVrFpqmMXr06PD3169fT8eOHSNQooiGr7/+mtLSUjRnEv4W8f0H6mvdBwiuQCYbxwgj5ebmYrPZqPGrlHgiO3gs1IrOysqSBX1MpNG/9UceeYSNGzfSoUMH7r77bh5//HGSkpLC33/11VdlCTmL0nU9PKLZ26oXqMYs6m8WgeRsAomZeL1ePvroI6PLEXHM4XCELzMW1ES2yzv0+NLYMpdGj0bo2LEjGzZsYN26dWRlZdGmTcNrltOnT29wzVpYx7Jly9ixYwe6ag+uMBbvFAVv694kbF/AnDlzuOKKK3A6o7+GshAAOTk57Nq1i/0RnoYVevyff7YLYzXpt2632+nfv/9hf4n9+/cnIyO+puzEio8//hgAX2ZXsBu70bxZ+Ft0QnMkUlpaynfffWd0OSKOhT5vi2oj25Iuqgs+fk5OTkSPI5omvvs1BWVlZSxatAhAWtE/par46nf/+u9//2twMSKehUJzf110WtIS0uYiIR3nvvjiC/x+P4HEjLhbvORYfJnBk5YlS5ZQVFRkcDUiXoX2TSiL8MCx0OOHjifMQUI6zs2dOxeQVvTh6O5U/Cmt0XWdzz//3OhyRJxq2bIlAOXeyH1c6/rBxw8dT5iDhHQcKywsZNu2bego+FrG97SrI/HXr0AWuiQgRLSFQrMsgiFd41fw68G1EVq0aBGx44imO6615urq6li9ejVFRUVoWsPNyM8///xmKUxE3uLFiwEIJLcCu9vgaszJnxacsbBx40bKyspIT083tiARd0Kh6QkoeALgisD4sQpfMKATExNxuWTwqJk0OaTnzp3L1VdfTXFx8SHfUxSFQCDQLIX93LPPPsuzzz4bXnq0d+/ePPDAAw3WExdN8/333wMQSJepc0eiO5MIJLbEVnOAH374gXHjxhldkogzCQkJKIqCruvU+hVctuZfeqzGH2ylyyIm5tPk/pPbbruNSy+9lH379qFpWoNbpAIaoF27djz66KMsW7aMpUuXMmbMGC644ALZreg4+f1+VqxYEfz/tFyDqzG30OuzZMkSgysR8UhV1fDCUTX+yCzXW1v/uD9doEqYQ5Nb0oWFhUyePJns7OxI1HNEP93MA4IroD377LMsXrz4iDu2eDwePB5P+N8VFRURrdFKdu3ahcfjQbc50BLkGtTRBJKD++pu2rTJ4EpEvEpKSqKqqopavwpox7x/U9VISJtWk1vSl1xyCfPnz49AKY0XCAR46623qK6u5pRTTjni/WbOnElaWlr4lpsrLcaQrVu3AhBIzIjbzTQaS0sKTk3bvXs3tbW1Blcj4lFCQgIAnubP5+DjBoKfAW63jE0xmya3pJ955hkuvfRSvv32W/r27YvD0XAz8ttvv73Zivu5NWvWcMopp1BXV0dycjJz5syhV69eR7z/1KlTmTx5cvjfFRUVEtT1tmzZAoCWKNMtjkV3JKI5ElB9tWzfvl322hVRF/qc9WuROaH214e/LH9rPk0O6TfffJPPP/8ct9vN/PnzUX7SClMUJaIh3b17d1auXEl5eTnvvvsu11xzDQsWLDhiULtcLhmpeAShvZIDCRLSjaEltET17WHHjh0S0iLqQuHpi1BL2lcf/hLS5tPkkL7vvvuYPn0699xzD2qUd0tyOp2cdFJwqcbBgwezZMkSnn76aZ5//vmo1hEL9u/fDwRHL4tj01zB16mkpMTgSkQ8CrWkfUdpSbd0aTx1SileDab+EBxnMnN4KU41+L2j8dcPGLfbj2tWroigJv9GvF4vl19+edQD+nA0TWswMEw0XihsdGeiwZVYg+4Ivk6Hm3ooRKQpjRg3YlMhK0HD85NJNplurVHzqvX6kDbD57poqMm/kWuuuYa33347ErUc1dSpU1m4cCE7d+5kzZo1TJ06lfnz53PVVVdFvRar83g8VFZWAqA5JKQbIxTSBw4cMLgSIUQ8aXJLOhAI8PjjjzNv3jz69et3yMCxP//5z81W3E8VFRVx9dVXs2/fPtLS0ujXrx/z5s3jrLPOisjxYll5eTkAuqKATa5BNYbuCI56LSsrM7YQEZca05IWsanJIb1mzRoGDhwIwNq1axt8L5JvpJdeeilijx1vwtOIVIdMv2okXQ2ejNbV1RlciYhHP19+ubmpSnSOI5quySH9zTffRKIOEUWhoAkFjzg2XQ3+qcg8aWEEn88HgENt/iVBAWz1Ie33+yPy+OL4Hfcoga1btzJv3rzwh5auR+bNI5pfOKRtMpKz0WzBExoJaWGEUEjbI9TxZa8Pfwlp82lySJeUlHDGGWfQrVs3zj77bPbt2wfA7373O6ZMmdLsBYrmF+6yVSWkGyvUkpbubmGEUEjbIjT4OhT+oeMI82jyr3zSpEk4HA7y8vJITDw4Mvjyyy9n7ty5zVqciIzQtDVdjcCed7GqPqRlyp8wQuh9F4kdsH76uHISaj5Nbkp9/vnnzJs3j3btGm5v2LVr1/AqVsLcwkEjLelGC53QaJqG3++XRR9EVNXU1ADgjlBIhx43dBxhHk1uSVdXVzdoQYccOHBAluC0iIMtaQmaRvvJayXXpUW0hd5zkQrpUEta3tvm0+SQPvXUU/n3v/8d/reiKGiaxuOPP87pp5/erMWJyAhv2WmXk6pGU23hk5qqqiqDixHxxO/3h0+sI9aStktL2qya3JR6/PHHOeOMM1i6dCler5c//vGPrFu3jgMHDrBo0aJI1CiaWWhBDl1Cukl0uwvF66esrIycnByjyxFx4qcnhYn2yIR0cv3jhlYiFObR5JZ0nz592Lx5M7/4xS+44IILqK6u5qKLLmLFihV06dIlEjWKZhZeccwue8c2Rej1Cr1+QkRDqOcr0a5FbHR3kiO4iInX65XBkSbT5JZ0Xl4eubm53HfffYf9Xvv27ZulMBE5ofWnNQnpJgktDSqbbIhoCrVuI9WKBnDbwKboBHSF8vJyWrVqFbFjiaZp8nlZp06dwtsc/lRJSQmdOnVqlqJEZIVG4WvuNIMrsRbNFXy98vLyDK5ExJPS0lIAUh2RC2lFgeT6x5eeInNpckjrun7YNbqrqqpwu6VlZnbV1dUUFRUBoCWkG1uMxYReL5lqKKIpHNLOyK6rnVb/+LLTm7k0urt78uTJQHA095/+9KcG07ACgQA//PADAwYMaPYCRfMKtQI1R4KM7m6iUEjv3LnT0DpEfAmFdFqEQzp0EhA6njCHRof0ihUrgGBLes2aNTidB7c4dDqd9O/fnzvvvLP5KxTNasOGDQBoCS0NrsR6Agkt0IHCwkJKSkrIyMgwuiQRB0ItW2lJx6dGh3Ro96vrrruOp59+mtTU1IgVJSJn6dKlAARSZQpRk9ldaIkZ2GpKWLZsGWPHjjW6IhEHQmOAWroiG9Khx5eBkebS5GvSL7/8sgS0Rfn9flauXBn8/9Q2xhZjUaHXbdmyZQZXIuJFOKTdkQ3pFvUhfbiBwcI4jW5JX3TRRY263/vvv3/cxYjIWr9+PTU1NWh2N1qidNUej0BaWyhYw9KlS9E0DVWN0MRVIeqFQrNFlFrSoYGlwhwaHdJpaTJdx+q++uoroD5oDjNCXxxbILkVus1BSUkJq1atYuDAgUaXJGKYx+MJD+TKiHBLOvT4hYWFET2OaJpGh/TLL78cyTpEhHm9Xr7++msAfBknGVyNhal2fC064SzezOeffy4hLSKqoKAAALdNCy/dGSmZ9SFdVlZGTU3NYTdSEtEnfXVx4vvvv6eyshLNkSiDxk6QPzN4kjN//nzZNUhEVCiksxK0iHd+JTl0Eu3SmjYbCek48dlnnwHgy+gCivzaT0QgORvNlUxtbS0LFiwwuhwRw/bu3QtAVoS7ukNCx9m3b19UjieOTT6t48Du3btZvHgxOuDL6mZ0OdanKPgyuwPBgZK6HtluSBG/du/eDUB2QiAqx8tODDQ4rjCehHQcmDNnDgCBtFx0Wa+7WfiyuqMrNjZv3szatWuNLkfEqD179gAHwzPSWidISJuNhHSMq66uDnd1e7N7GVxN7NAdbnwZnQF47733DK5GxKpQWLaOVkhLS9p0JKRj3GeffUZNTQ0BdzoBWcCkWfmyewOwcOFCGWgjmp3P5wtfk26dGJ1r0qHjyE5v5iEhHcMCgUB4cRlfdi+ZG93MtMSW+FNy0DSNDz74wOhyRIzZvXs3mqbhtmm0iPC63SFtkoIt6eLiYqqqqqJyTHF0EtIx7Pvvv2fv3r3oNqfMjY4Qb31r+uOPP5bpWKJZhbZEbZsUiNr5daJdJ90prWkzkZCOYf/5z38A8Gb1AFuj160RTRBIz0VzpVBVVcXnn39udDkihoS2RG0TpevRIW2S/A2OL4wlIR2j8vLyWLVqFToKvlY9jC4ndilKeEDexx9/bHAxIpZs374dgHbJ0Q3pdvVd3jt27IjqccXhSUjHqFCrLpDWFt2VbHA1sc2X0QVdUdm6dSvbtm0zuhwRI0IhmRvlkA4dL3SSIIwlIR2DNE3jiy++AGSd7qiwu/Gn5wIwb948g4sRsaCuri48DSo32R/VY4eOJyFtDhLSMWjVqlUUFhai25z4W7Q3upy44MvoCsAXX3xBIBDdlo+IPTt27EDXdVIdGmnO6K5o1zYpgIJOaWkpJSUlUT22OJSEdAxaunQpAP709qDKgLFoCKS1Q1cdlJaWSgtEnLDNmzcD0CEluq1oAJcNcuoHq23ZsiXqxxcNSUjHoDVr1gDgT2ltcCVxRFUJJLcCDr7+QhyvrVu3AtAhxZhemY71xw2dLAjjSEjHGK/Xy4YNG4Dgbk0iegIpwddb1vIWJyoUjh0NaEnDwRa8tKSNJyEdY7Zu3YrP50Ozu9HdqUaXE1dCJ0Xr1q0zuBJhZV6vN3zJpEOUB42FdKoP6U2bNhlyfHGQZUJ65syZDB06lJSUFFq1asWFF14ob6DDKC8vB0B3JssyoFGm1U91C/0OhDge27dvx+fzkezQaJUQneVAf65Dih8FnaKiIg4cOGBIDSLIMiG9YMECbrnlFhYvXswXX3yBz+dj7NixVFdXG12aqXg8HgB0WWEs+uoH6dXV1cke0+K4bdy4EQi2Zo06z06wH1zHO1SPMIZlPsnnzp3b4N+vvPIKrVq1YtmyZZx22mkGVWU+oZBGtRlbSBzSfzKS3uv14nK5DKxGWFVoTEmnVGO6ukM6p/jZU21nw4YNjBgxwtBa4pllWtI/F+pSbNmy5RHv4/F4qKioaHCLdT6fr/7/pKvbSAd/D0I0zfr16wE4yeCQ7pIWPH6oHmEMS4a0pmnccccdjBw5kj59+hzxfjNnziQtLS18y83NjWKVxmjbti0Aal2ZsYXEIbUueOKYnp5OUlKSwdUIKyovLyc/Px84GJJGCZ0kbNiwQRboMZAlQ/qWW25h7dq1vPXWW0e939SpUykvLw/fQm/+WHbSScFlQFVPFfg9BlcTX2w1wdWZunbtiiKD9sRxCLVaWycGSHEYO66hXXIAl02npqZGdsQykOVC+tZbb+WTTz7hm2++oV27dke9r8vlIjU1tcEt1qWkpJCdHZwKZKuRUZnRpNaHdOhESYimCk3fOynV+MslqgJd6lvTMvffOJYJaV3XufXWW5kzZw5ff/01nTp1Mrok0+revTsA9nJr9BzoziSq+l1KVe8J4a9V9Z5AVb9L0Z0W6TbWNexlwQ0RunXrZnAxwqpCq9V1Tze2qzukW1rwZEFW0TOOZUL6lltu4bXXXuONN94gJSWFgoICCgoKqK2tNbo00/nlL38JgGP/FtDM8cd+VIqK7kppsKWm7kpGd6WAYo23qK18D6q3ipSUFE455RSjyxEW5PP5wiO7u6YZ35IG6FZ/siAhbRxrfAICzz77LOXl5YwePZqcnJzw7e233za6NNMZPnw42dnZKAEP9gOycXs0OIuCH67jx4/H7XYbXI2wos2bN+P1ekl2aOQkGrOIyc91SfWhoFNYWEhRUZHR5cQly4S0ruuHvV177bVGl2Y6NpuN888/HwBn4XqQhTUiSqkrx1Ye7OoOve5CNNWqVasA6J5m3CImP5dgP7jJx+rVqw2uJj5ZJqRF05xzzjm43W5sNSXYi2WR/IjRddx5i1GAU0455ZiDGYU4klAIdm9hjq7ukB7pwXpCJxEiuiSkY1R6enq4l8G1ewn464wtKEbZS3diL9+Dw+Hg5ptvNrocYVGBQCB83TcUimbRvb4eaUkbQ0I6hl1yySV06tQJ1e/BtXup0eXEnoAPV94PAPzqV7+Ki8VyRGRs27aN6upqEmwa7ZPNtXBIaPDYrl27ZLMNA0hIxzC73c6kSZMAcO7fjK1ir8EVxRZX/hJUXw1t2rThV7/6ldHlCAtbsWIFEJx6pZrkenRIikMnt37LTGlNR5+EdIzr168f5513HgDubQtQfDUGVxQb7CXbce4P7g40efJk2UxDnJCVK1cC0NNk16NDetZ3eYfqFNEjIR0Hbrnllvpu71rc2xaAbo7pHVal1JXj3rkIgKuuuoohQ4YYXJGwskAgEG6hmu16dEiPFsGWdKjFL6JHQjoOuN1upk2bhtvtxl65D+felUaXZF2an4Rt36BoPvr168d1111ndEXC4rZu3Wra69Eh3dOD86V37dpFaWmp0eXEFQnpONGhQwemTJkCgGvvSmxleQZXZEG6jnvnd9hqDpCens6f/vQn7HbLbMkuTOqn16NtJv1EDl6XDp5ASJd3dJn0LSEi4ayzzuKCCy4AIGHbAtQaOSNuCkfBWhwlW1FVlfvvv5+srCyjSxIxwOzXo0N6yHVpQ0hIx5nbbruNAQMGoGg+ErZ+geKT+dONYSvLx717CRDciU2uQ4vmYOb50T8XOomQkI4uCek4Y7fbmT59Om3atEH1VOHe9jVoMpDsaNTaMhK2zwfgvPPOY8KECUf/ASEaKXQ9OtGuhZffNKvu6X65Lm0ACek4lJaWxiOPPEJiYiL2ygJced/L+t5H4q8jYcsXKAEf/fv35/bbb0cxy8LKwvJCS212TTPf/OifS3botKu/Li1LhEaPhHSc6tSpE/fffz+KouDcvwlH/S5O4ic0jYSt36B6KmndujXTp0/H4XAYXZWIIaGwM3tXd4hcl44+Cek4NmLECG644QYAXHk/yIpkP+PK/wF75T4SEhKYMWMG6enpRpckYoimaT+5Hm2Bfd85WKfsLx09EtJx7oorrmDs2LEo6CRs/RqlrsLokkzBUbQRZ9EGFEXh/vvvp3PnzkaXJGJMXl4eFRUVOFWdDinWCOmuacGW9Pbt26mqqjK4mvggIR3nFEVhypQp9OrVCyXgJWHb16BZ4wMjUtTqYlx5iwH4/e9/z8iRIw2uSMSiUGu0S6ofu0U+idNdOtkJAXRdZ926dUaXExcs8tYQkeRyuZg+fTrp6enYag7g2rXY6JKM468L9ijoGqeeeqpsnCEiZu3atQB0tcj16JBQazpUv4gsCWkBQFZW1sGBZMWbse/fbHRJ0afrJGxfiOqtom3bttx9990ykltEzPr16wHommqtnquT0oL1btggg02jQUJahA0ZMiS8FrV71/eotfE1F9JZsAZ7+W6cTifTp08nOTnZ6JJEjKqsrCQ/Px+AThYL6c719W7cuBFN1liIOAlp0cCvf/1rhg4diqIHcG//Nm52zFJrDuDcsxyAiRMnctJJJxlckYhlmzZtAqCVO0Cq01prFLRLCuBQdaqqqti9e7fR5cQ8CWnRgKqq3H333SQnJ2OrKca5Lw42edc03Du+RdE1RowYwdlnn210RSLGbd4cvJzU0WKtaAC7Ch2Sg3WHnoeIHAlpcYjMzEwmTpwIgHPvStSaEoMriiznvpXYakpITU1lypQpch1aRNz27duBg2FnNe3rlzANPQ8RORLS4rDOPPNMTj31VBRdw71zUcwuG6rUluPcF1z1aeLEiWRkZBhckYgH27ZtAwhv/2g1uUnBkwsJ6ciTkBaHpSgKkyZNIjExEVt1MfaSbUaXFBHu/B9RdJ2TTz6ZMWPGGF2OiAM+n4+8vOB+7u2sGtL1dYdONkTkSEiLI2rZsiVXXXUVAK7dyyBgza65I7GV78Feno/NZuPmm2+Wbm4RFfv27SMQCOCy6WS4rDkws01SMKT3799PXZ1sdxtJEtLiqC655BKys7NRfdU4C2JovV5dw5X/IwAXXngh7du3N7ggES/27g2ukd8qIYBVzwuTHTqJ9uAJRuj5iMiQkBZH5XK5uPHGGwFwFqwFv9fgipqHvXQnttpSkpOTufrqq40uR8SRn4a0lbVKkJCOBglpcUyjR4+mY8eOKJoP5/6NRpdz4nQd575gr8All1xCWlqawQWJeFJQUABAltuaXd0hoZOM0PMRkSEhLY5JVVWuvPJKAByF6yy/AYetYi+2mhLcbjcTJkwwuhwRZ0pLgyv5pTmtHdKh+svKyowtJMZJSItGGTNmDFlZWai+WhwWH+kdurZ+9tlnSytaRF0o1Ky20tjPpTqC9YdOOkRkSEiLRnE4HFx66aXB/y+ybpe3UleOvWIvqqqGn48Q0RQOaYe1W9Ip9S1pCenIkpAWjTZu3DgcDge2mhLLrkLmKN4CwNChQ8nJyTG4GhGPampqAHDbrd2STqyvv7a21uBKYpuEtGi0tLQ0fvGLXwDgsOJWlroWDmlZn1sYxe8PjulwqNYOaVv99DGfz1r7YVuNhLRoklC4OUq2WW4Ama18D6qvlrS0NEaMGGF0OSJOhULNbtE50iH2+pOMQMDaU8nMTkJaNMmgQYPIzMxECXixl+8xupwmCQ14O/PMM3E4HAZXI+JVqCWtWjykQ/WHno+IDAlp0SQ2m43TTz8dAPuBHQZX0wQBP/ay4HrJska3MJLL5QLAa+1xY3gDwZQOPR8RGRLSoslCIWcvy4OANa5H2cvzUTQ/2dnZ9OrVy+hyRBxLSEgAwBOwdlPaW9/LHXo+IjIsFdILFy7kvPPOo02bNiiKwgcffGB0SXGpR48e5OTkoGh+7OX5RpfTKKFW/5gxY2QjDWGoUKjVWTykQ/W73W6DK4ltlgrp6upq+vfvz+zZs40uJa4pisLo0aMBsB/YaWgtjRLwYS8LnkyEuuqFMEpKSgoAVT5LffweorK+/tDzEZFhN7qAphg/fjzjx483ugxBMOzefPPNYEs64AObeQdi2cvyUfQAbdq0oWvXrkaXI+Jcq1atACips3ZIh+oPPR8RGdZ+lxyDx+OhoqKiwU00j65duwYvO2gB03d520uDXd2jR4+Wrm5huNatWwOxE9LZ2dkGVxLbrP0uOYaZM2eSlpYWvuXm5hpdUsxo2OVt4lHeAR/2st0A4XqFMFKo5bm/zmZwJScmVL+EdGTFdEhPnTqV8vLy8C0/39wtPqs544wzAIIh6PcYXM3h2Ut3ougBcnNzpatbmELHjh0ByK+yoUdg0TGnCi+OKuHFUSU4I/QJX+eHotrgg3fo0CEyBxFAjIe0y+UiNTW1wU00n86dOwf3mdYD2Et3GV3OYTlKtgPBBUykq1uYQadOnVBVlUqfSqmn+T+CFQVctuAtUm/5/Go7OgoZGRlkZGRE5iACiPGQFpGlKApnnnkmAI4D5tu+UvHVYqvYCxxs9QthNJfLRadOnQDYWWnNLu+dlcExx9I7FXmWCumqqipWrlzJypUrAdixYwcrV64kLy/P2MLiWCj8bBX7UDxVBlfTkL1kGwo6PXr0oF27dkaXI0RYt27dANhSbt5ZEUeztTwY0t27dze4kthnqZBeunQpAwcOZODAgQBMnjyZgQMH8sADDxhcWfzKyclhwIABKBzcBtIUdB1HcXCnLpm2J8wm9Bm2vtR6Ia3rsO5AsO7Q8xCRY6l50qNHj0aPxEgLcULOPvtsVq5ciaN4C942AyJ3IawJ1Or92GrLcLlc0tUtTGfQoEFAsLu70qeQ4rDO59ruahsVPhW32y1L7EaBpVrSwpxGjRpFUlISqrcqfA3YaKFW9KhRo0hOTja4GiEayszMpGPHjugorD9grdb02vp6+/Xrh9PpNLia2CchLU6Yy+XirLPOAsBRtMHgagC/Jzyq+5xzzjG4GCEOb/jw4QAs22+toFtaX++wYcMMriQ+SEiLZnHhhRcC9UtwGjyAzFG8BUXz07lzZ/r162doLUIcSWhxnRUlzvCOUmZ3oE4ND3YbNWqUwdXEBwlp0Sw6duzIoEGDUNBxFG00rhBdx1nfmp8wYYLMjRam1aNHD7Kzs/EEFFaVWKM1vaS+Fd2nTx+ysrIMriY+SEiLZjNhwgQAHMWbIOA3pAZb+W5UTyXJycnhOdxCmNFPl9b9vtAaIf19gQuQJXajSUJaNJsRI0aQk5OD6vfgKNlqSA3OgrVAcMS5bEYvzG7s2LEArCh2UuE1d69PXpWN7ZV2bDabzJiIIglp0WxsNhuXXHIJUB+WUZ4up1YXY6/c16AOIcysS5cu9OzZk4Cu8O0+l9HlHNWCvcH6Ro4cSYsWLQyuJn5ISItmNX78eJKTk1E9FdjLorsSXKgVffrpp8set8IyQjMQFuxzR/u8ttG8Afiuvqv73HPPNbia+CIhLZpVYmIi559/PgCOgjVRO67iqQrvG33ZZZdF7bhCnKgxY8aQmJhIQY0tPAfZbL4rdFHtV8nOzmbw4MFGlxNXJKRFs7vooouw2+3Yq4pQKwujckxn4ToUXWfQoEHhdZGFsILExMTw0rXzdrsNruZQug7z8oN1XXTRRdhs1twUxKokpEWzy8zMDA+IcUajNe334Ni/CYArr7wy8scToplddNFFKIrC6hIne6vN9bG8rtTBnmo7brebs88+2+hy4o653g0iZlx++eUA2MvyUGrLI3osZ9FGFM1Ply5dGDJkSESPJUQktG3blhEjRgAwL99csxLm1reix48fT0pKisHVxB8JaRERHTp0YMSIESiAs3Bt5A6k+XEUrgfgiiuukMVLhGWFTmy/3eeizGOO93FepY3VJU5UVeXiiy82upy4JCEtIib0oeMo3oriq43IMewl21H9tWRlZXH66adH5BhCREO/fv3o06cPfl1hrkla05/sCtYxevRo2ZPdIBLSImL69etH9+7dUfRAZJYK1fVwK/3iiy/GbrfUzqtCHOJXv/oVAF/vcVPtM7Y1XVij8kNRcCU0GethHAlpETGKohxsTRdtAK15lwq1VezBVltGYmKizN0UMeGUU06hc+fO1AUUvjB4pPcnuxLQURg2bBhdu3Y1tJZ4JiEtIuq0004jOzsb1V+H/cCOZn1sZ/216LPPPlv2jBYxQVEUfv3rXwPBAVu1fmNa08W1Kv+rX7zk6quvNqQGESQhLSLKbreHFzdxNuNe00pdBbby3cDBbTKFiAWjRo0iNzeXGr/Kl7uNWSr0k7wEArrCoEGD6NOnjyE1iCAJaRFx55xzDg6HA1t1MWrV/mZ5TGfRRhSCG8/LgBYRS2w2G7/5zW8A+Cw/gboobyh3wKOycK+0os1CQlpEXHp6enjkdbO0pjU/juLNgLSiRWwaM2YMbdu2pcqn8tWe6F6b/mSXG7+u0L9/fwYMGBDVY4tDSUiLqAh1edtLd0LAd0KPZS/NQwl4adWqFcOHD2+G6oQwF7vdHr42/d+8BDyB6By31KOwYG/wpOCaa66JzkHFUUlIi6jo3bs3ubm5KJr/hAeQOUq2ADBu3DhZR1jErLPOOos2bdpQ6VP5Okqt6U93JeDTFPr06cPAgQOjckxxdBLSIioURWHcuHEAOEq2Hv/jeGuwle8FCD+eELHo561pb4Rb02UehW9+0oqW1fvMQUJaRM3YsWNRFAV7ZQGKp+q4HsN+YBsKOn369JEBYyLmjR07luzsbMq9KvP3RrY1/Vl+sBXds2dPWQPfRCSkRdS0atWKfv36AWAv3XVcj+E4EPy5M844o9nqEsKs7HZ7eBWyT/Pc+LTIHKfSq4S71K+++mppRZuIhLSIqlNPPRUAe1nTQ1rx1mCrLgLgF7/4RbPWJYRZjR8/nszMTEo9Nv63LzLzpuflu/EEFLp168bJJ58ckWOI4yMhLaIqFNK2yoImb7oRCvZevXqRlZXV7LUJYUZOp5MrrrgCgE/zEtD05n38Wr/Cl/Wt6F//+tfSijYZCWkRVdnZ2cFNNyC8Ylhj2cvygINBL0S8OOecc0hNTaWo1saS+k0vmss3e13U+FVyc3Olh8qEJKRF1A0dOhQAe/0o7UbRAtgqC4HgKmNCxJOEhAQuuugioH7ji2ZqTfs0mJcX3I7yyiuvRFUlEsxGfiMi6kIjR20Ve2nsp42tqghF89OiRQs6d+4cyfKEMKUJEybgdrvZVWVnXamjWR5zcaGLUq9KZmYmZ555ZrM8pmheEtIi6nr16oXb7Ub116LWljbqZ2wVwVb34MGD5ZqZiEtpaWmMHz8egM/zT3w6lq4HB4wBXHTRRTidzduNLpqHhLSIOqfTSd++fQGwVRU26mdC95NVkEQ8u/jiiwFYWeKkoObEPr43ltnJq7LjdrtlP3YTk5AWhujVqxcQ7MY+Jl3DVh3cPat3796RLEsIU2vXrh2nnHIKAJ/nJ5zQY82r//lx48aRmpp6wrWJyJCQFoY4GNLH3rpSrSlF0QIkJSXRvn37SJcmhKmFWtP/K3Ae9zaWxXUqK4qD17VDA9KEOUlIC0P07NkTANVTAf66o9431Iru2bOnjD4VcW/QoEG0bduWuoDK4qLjW9xk4V4XOgoDBw6kQ4cOzVyhaE7yiScMkZqaSps2bQCw1Rx98JhaUwJAt27dIl6XEGanqirnnXceAN8cx+5YAY3wdpRyLdr8JKSFYUJTqdSaA0e9XyjEu3TpEvGahLCCX/7yl9jtdnZU2tlV2bTtWlcfcFDqVUlLS5OFgSzAciE9e/ZsOnbsiNvtZvjw4fz4449GlySOUyh01dqjhLSuh78v86OFCEpPT2fkyJEALCpoWpd36P7jxo2TaVcWYKmQfvvtt5k8eTIPPvggy5cvp3///owbN46iokaMEBam06lTJwBsR5krrXirUDQ/drud3NzcaJUmhOmNHTsWgO8LXY1ez7vGr7CiOBjMZ511VqRKE83IUiH95z//meuvv57rrruOXr168dxzz5GYmMg///lPo0sTxyE0YEWtqzjiymNqXTkQnHpit9ujVpsQZjds2DBSU1Mp96qsb+QKZEuKnPg0hY4dO3LSSSdFuELRHCwT0l6vl2XLljVYuk5VVc4880y+//77w/6Mx+OhoqKiwU2YR5s2bVAUBSXgRTnCCG+1Lvg7a9euXTRLE8L0HA4Ho0ePBmBxYeO6rX8oPNiKlpX7rMEyIV1cXEwgECA7O7vB17OzsykoKDjsz8ycOZO0tLTwTbpLzcXlcoV/n6EW88+Fvi6/OyEONWrUKABWFDsJaEe/b7VPYUOZo8HPCfOzTEgfj6lTp1JeXh6+5efnG12S+JlQC1mpqwDVTuWg31A56DegBru2Qy3ptm3bGlajEGbVv39/UlJSqPSpbCk/+uWglSUOAnqwq1t6pqzDMiGdmZmJzWajsLDhWs+FhYW0bt36sD/jcrlITU1tcBPmkpOTA4DqrQJFAZsjeKvvilO8VQDhOdVCiIPsdjsjRowAYFnx0bu8l+8Pfl+mXVmLZULa6XQyePBgvvrqq/DXNE3jq6++Cq9lK6wnHNKeykO/qeuonqoG9xNCNBQK6dUlRx485tdg7QFHg/sLa7DUcNnJkydzzTXXMGTIEIYNG8asWbOorq7muuuuM7o0cZxCvSBKfRj/lOKrRdEDqKpKVlZWtEsTwhIGDRqEqqrsq7FTUqeS4T704vT2Cju1AZXU1FRZuc9iLBXSl19+Ofv37+eBBx6goKCAAQMGMHfu3EMGkwnrONiSPkxI13d1Z2VlyfQrIY4gJSWFnj17sm7dOtYecDCqjeeQ+4Ra0YMHD8Zma9oKZcJYlunuDrn11lvZtWsXHo+HH374geHDhxtdkjgBrVq1AkDx1YDesAWg1od06D5CiMMbMmQIAOuOMF86NI968ODBUatJNA/LhbSILS1atMBut6Ogo3hrGnxP8VQDSE+JEMfQv39/ALaUHdrj5NNgR2Xw6wMGDIhmWaIZSEgLQ6mqGm4ph1rO4e95gyEtLWkhjq5Hjx6oqkqJx8aBuoYf6zsr7fg0hfT0dJnKaEFyoU8YLisri7179x7akq4PaRk0JsTRJSYmctJJJ7F582amLU3DqR5cZrc2EJzO2Lt3b1llzIIkpIXhQiEcCuUQ1SctaSEa65RTTmHz5s2UeQ/fQSpTVa1JQloYLhTSoVAOCYV2ZmZm1GsSwmquueYafvGLX+D1eg/5XkJCQnjXOWEtEtLCcKEQbtDdrWkovtoG3xdCHJmqqnTt2tXoMkQzk4FjwnChEFZ/EtKKvxYFsNlstGjRwqDKhBDCWBLSwnDhlvRPurtDXd0ZGRmoqrxNhRDxST79hOEOhnQN6MFRqaFWtXR1CyHimYS0MFxGRgaKoqDoOoq/DqgP7PrvCSFEvJKQFoaz2+2kpaUBB8NZQloIISSkhUmEwjg0oluVkd1CCCEhLcwhHNL116JD/5WWtBAinklIC1MIhbEa7u4OtqRbtmxpWE1CCGE0CWlhCqEwVnyhgWMS0kIIISEtTCG0YIniqwVdC4/ylpAWQsQzCWlhCuGWtL8WxV8X3F9aUcKjvoUQIh5JSAtT+GlLOtTlnZqait0uy8sLIeKXhLQwhVBIq7668PVoWbNbCBHvJKSFKaSnpwOgBDzhhUwkpIUQ8U5CWphCSkpKeCMNtbYcOBjcQggRrySkhSnYbDZSUlIAUOuCIS2DxoQQ8U5CWphGamoqcDCkQ/8WQoh4JSEtTCPUclY9EtJCCAES0sJEQqGs1O8pLSEthIh3EtLCNELXpI/0byGEiDcS0sI0kpOTG/xbQloIEe8kpIVp/Dykf/5vIYSINxLSwjR+HspJSUkGVSKEEOYgIS1MIzExscG/JaSFEPFOQlqYxk9DWlEU3G63gdUIIYTxJKSFafw0pBMSEsLLhAohRLyST0FhGgkJCYf9fyGEiFcS0sI0fhrM0tUthBAS0sJEfhrMEtJCCCEhLUzkp8Es3d1CCCEhLUwkMzOTM888k3bt2nHeeecZXY4QQhhO0fX63QxM7pFHHuHTTz9l5cqVOJ1OysrKmvwYFRUVpKWlUV5eLps3CCGEMD3LtKS9Xi+XXnopN910k9GlCCGEEFFhN7qAxpo+fToAr7zyirGFCCGEEFFimZA+Hh6PB4/HE/53RUWFgdUIIYQQTWOZ7u7jMXPmTNLS0sK33Nxco0sSQgghGs3QkL7nnntQFOWot40bNx7340+dOpXy8vLwLT8/vxmrF0IIISLL0O7uKVOmcO211x71Pp07dz7ux3e5XLhcruP+eSGEEMJIhoZ0VlYWWVlZRpYghBBCmJZlBo7l5eVx4MAB8vLyCAQCrFy5EoCTTjqJ5ORkY4sTQgghIsAyi5lce+21/Otf/zrk69988w2jR49u1GPIYiZCCCGsxDIh3RwkpIUQQlhJTE/BEkIIIaxMQloIIYQwKQlpIYQQwqQkpIUQQgiTkpAWQgghTEpCWgghhDApyyxm0hxCs81kNywhhBBmkJKSgqIoR/x+XIV0ZWUlgOyGJYQQwhSOtW5HXC1momkae/fuPeaZizBORUUFubm55Ofny4IzQhwn+TuyDmlJ/4SqqrRr187oMkQjpKamyoeLECdI/o6sTwaOCSGEECYlIS2EEEKYlIS0MBWXy8WDDz6Iy+UyuhQhLEv+jmJHXA0cE0IIIaxEWtJCCCGESUlICyGEECYlIS2EEEKYlIS0EEIIYVIS0sI0Zs+eTceOHXG73QwfPpwff/zR6JKEsJSFCxdy3nnn0aZNGxRF4YMPPjC6JHGCJKSFKbz99ttMnjyZBx98kOXLl9O/f3/GjRtHUVGR0aUJYRnV1dX079+f2bNnG12KaCYyBUuYwvDhwxk6dCjPPPMMEFxnPTc3l9tuu4177rnH4OqEsB5FUZgzZw4XXnih0aWIEyAtaWE4r9fLsmXLOPPMM8NfU1WVM888k++//97AyoQQwlgS0sJwxcXFBAIBsrOzG3w9OzubgoICg6oSQgjjSUgLIYQQJiUhLQyXmZmJzWajsLCwwdcLCwtp3bq1QVUJIYTxJKSF4ZxOJ4MHD+arr74Kf03TNL766itOOeUUAysTQghj2Y0uQAiAyZMnc8011zBkyBCGDRvGrFmzqK6u5rrrrjO6NCEso6qqiq1bt4b/vWPHDlauXEnLli1p3769gZWJ4yVTsIRpPPPMMzzxxBMUFBQwYMAA/vrXvzJ8+HCjyxLCMubPn8/pp59+yNevueYaXnnllegXJE6YhLQQQghhUnJNWgghhDApCWkhhBDCpCSkhRBCCJOSkBZCCCFMSkJaCCGEMCkJaSGEEMKkJKSFEEIIk5KQFkIIIUxKQloI0WTTpk1jwIABRpchRMyTkBYiDhUUFHDbbbfRuXNnXC4Xubm5nHfeeQ02ORFCGE822BAizuzcuZORI0eSnp7OE088Qd++ffH5fMybN49bbrmFjRs3RqUOn8+Hw+GIyrGEsCppSQsRZ26++WYUReHHH3/k4osvplu3bvTu3ZvJkyezePFiAPLy8rjgggtITk4mNTWVyy677JD9vn9K0zQeeugh2rVrh8vlYsCAAcydOzf8/Z07d6IoCm+//TajRo3C7Xbz+uuvR/y5CmF1EtJCxJEDBw4wd+5cbrnlFpKSkg75fnp6OpqmccEFF3DgwAEWLFjAF198wfbt27n88suP+LhPP/00Tz31FE8++SSrV69m3LhxnH/++WzZsqXB/e655x4mTpzIhg0bGDduXLM/PyFijXR3CxFHtm7diq7r9OjR44j3+eqrr1izZg07duwgNzcXgH//+9/07t2bJUuWMHTo0EN+5sknn+Tuu+/miiuuAOCxxx7jm2++YdasWcyePTt8vzvuuIOLLrqomZ+VELFLWtJCxJHG7Ey7YcMGcnNzwwEN0KtXL9LT09mwYcMh96+oqGDv3r2MHDmywddHjhx5yP2HDBlynJULEZ8kpIWII127dkVRlKgNDvu5w3WxCyGOTEJaiDjSsmVLxo0bx+zZs6murj7k+2VlZfTs2ZP8/Hzy8/PDX1+/fj1lZWX06tXrkJ9JTU2lTZs2LFq0qMHXFy1adNj7CyEaT65JCxFnZs+ezciRIxk2bBgPPfQQ/fr1w+/388UXX/Dss8+yfv16+vbty1VXXcWsWbPw+/3cfPPNjBo16ojd1XfddRcPPvggXbp0YcCAAbz88susXLlSRnALcYIkpIWIM507d2b58uU88sgjTJkyhX379pGVlcXgwYN59tlnURSFDz/8kNtuu43TTjsNVVX55S9/yd/+9rcjPubtt99OeXk5U6ZMoaioiF69evHRRx/RtWvXKD4zIWKPojdmJIkQQgghok6uSQshhBAmJSEthBBCmJSEtBBCCGFSEtJCCCGESUlICyGEECYlIS2EEEKYlIS0EEIIYVIS0kIIIYRJSUgLIYQQJiUhLYQQQpiUhLQQQghhUv8PTpTFtqzhn7UAAAAASUVORK5CYII=", "text/plain": [ "
" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "sns.catplot(x=\"Color\", y=\"Item Size\",\n", " kind=\"violin\", data=new_pumpkins)" ] }, { "cell_type": "markdown", "id": "bab8ea7e", "metadata": {}, "source": [ ":::{seealso}\n", "Try creating this plot, and other Seaborn plots, using other variables.\n", ":::\n", "\n", "Now that we have an idea of the relationship between the binary categories of color and the larger group of sizes, let's explore logistic regression to determine a given pumpkin's likely color." ] }, { "cell_type": "markdown", "id": "a86b7b3c", "metadata": {}, "source": [ ":::{seealso}\n", "\n", "**Show Me The Math**\n", "\n", "Remember how linear regression often used ordinary least squares to arrive at a value? Logistic regression relies on the concept of 'maximum likelihood' using [sigmoid functions](https://wikipedia.org/wiki/Sigmoid_function). A 'Sigmoid Function' on a plot looks like an 'S' shape. It takes a value and maps it to somewhere between 0 and 1. Its curve is also called a 'logistic curve'. Its formula looks like this:\n", "\n", ":::{figure} https://static-1300131294.cos.ap-shanghai.myqcloud.com/images/ml-regression/sigmoid.png\n", "---\n", "name: 'Logistic function'\n", "width: 90%\n", "---\n", "Logistic function{cite}`logistic_function`\n", ":::\n", "\n", "Where the sigmoid's midpoint finds itself at x's $0$ point, L is the curve's maximum value, and $k$ is the curve's steepness. If the outcome of the function is more than 0.5, the label in question will be given the class '1' of the binary choice. If not, it will be classified as '0'.\n", "\n", ":::" ] }, { "cell_type": "markdown", "id": "3d79d171", "metadata": {}, "source": [ "## Build your model\n", "\n", "Building a model to find these binary classification is surprisingly straightforward in Scikit-learn.\n", "\n", "1 . Select the variables you want to use in your classification model and split the training and test sets calling `train_test_split()`:" ] }, { "cell_type": "code", "execution_count": 8, "id": "afab55c7", "metadata": { "attributes": { "classes": [ "code-cell" ], "id": "" } }, "outputs": [], "source": [ "from sklearn.model_selection import train_test_split\n", "\n", "Selected_features = ['Origin','Item Size','Variety','City Name','Package']\n", "\n", "X = new_pumpkins[Selected_features]\n", "y = new_pumpkins['Color']\n", "\n", "X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=0)\n" ] }, { "cell_type": "markdown", "id": "732f9fe1", "metadata": {}, "source": [ "2 . Now you can train your model, by calling `fit()` with your training data, and print out its result:" ] }, { "cell_type": "code", "execution_count": 9, "id": "1e6369a6", "metadata": { "attributes": { "classes": [ "code-cell" ], "id": "" } }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ " precision recall f1-score support\n", "\n", " 0 0.83 0.98 0.90 166\n", " 1 0.00 0.00 0.00 33\n", "\n", " accuracy 0.81 199\n", " macro avg 0.42 0.49 0.45 199\n", "weighted avg 0.69 0.81 0.75 199\n", "\n", "Predicted labels: [0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0\n", " 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0\n", " 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0\n", " 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0\n", " 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0\n", " 0 0 0 0 0 1 0 0 0 0 0 0 0 0]\n", "Accuracy: 0.8140703517587939\n" ] } ], "source": [ "from sklearn.model_selection import train_test_split\n", "from sklearn.metrics import accuracy_score, classification_report \n", "from sklearn.linear_model import LogisticRegression\n", "\n", "model = LogisticRegression()\n", "model.fit(X_train, y_train)\n", "predictions = model.predict(X_test)\n", "\n", "print(classification_report(y_test, predictions))\n", "print('Predicted labels: ', predictions)\n", "print('Accuracy: ', accuracy_score(y_test, predictions))" ] }, { "cell_type": "markdown", "id": "b306eea6", "metadata": {}, "source": [ ":::{note}\n", "Take a look at your model's scoreboard. It's not too bad, considering you have only about 1000 rows of data.\n", ":::" ] }, { "cell_type": "markdown", "id": "b41056dc", "metadata": {}, "source": [ "## Better comprehension via a confusion matrix\n", "\n", "While you can get a scoreboard report [terms](https://scikit-learn.org/stable/modules/generated/sklearn.metrics.classification_report.html?highlight=classification_report#sklearn.metrics.classification_report) by printing out the items above, you might be able to understand your model more easily by using a [confusion matrix](https://scikit-learn.org/stable/modules/model_evaluation.html#confusion-matrix) to help us understand how the model is performing.\n", "\n", ":::{note}\n", "🎓 A '[confusion matrix](https://wikipedia.org/wiki/Confusion_matrix)' (or 'error matrix') is a table that expresses your model's true vs. false positives and negatives, thus gauging the accuracy of predictions.\n", ":::\n", "\n", "1. To use a confusion metrics, call `confusion_matrix()`:" ] }, { "cell_type": "code", "execution_count": 10, "id": "fafddde8", "metadata": { "attributes": { "classes": [ "code-cell" ], "id": "" } }, "outputs": [ { "data": { "text/plain": [ "array([[162, 4],\n", " [ 33, 0]], dtype=int64)" ] }, "execution_count": 10, "metadata": {}, "output_type": "execute_result" } ], "source": [ "from sklearn.metrics import confusion_matrix\n", "confusion_matrix(y_test, predictions)" ] }, { "cell_type": "markdown", "id": "bb48866c", "metadata": {}, "source": [ "Take a look at your model's confusion matrix:\n", ":::output\n", "array([[162, 4],\n", " [ 33, 0]])\n", ":::" ] }, { "cell_type": "markdown", "id": "1ad1b3ec", "metadata": {}, "source": [ "In Scikit-learn, confusion matrices Rows (axis 0) are actual labels and columns (axis 1) are predicted labels.\n", "\n", "What's going on here? Let's say our model is asked to classify pumpkins between two binary categories, category 'orange' and category 'not-orange'.\n", "\n", "- If your model predicts a pumpkin as not orange and it belongs to category 'not-orange' in reality we call it a true negative, shown by the top left number.\n", "- If your model predicts a pumpkin as orange and it belongs to category 'not-orange' in reality we call it a false negative, shown by the bottom left number.\n", "- If your model predicts a pumpkin as not orange and it belongs to category 'orange' in reality we call it a false positive, shown by the top right number.\n", "- If your model predicts a pumpkin as orange and it belongs to category 'orange' in reality we call it a true positive, shown by the bottom right number.\n", "\n", "As you might have guessed it's preferable to have a larger number of true positives and true negatives and a lower number of false positives and false negatives, which implies that the model performs better.\n", "\n", "How does the confusion matrix relate to precision and recall? Remember, the classification report printed above showed precision (0.83) and recall (0.98)." ] }, { "cell_type": "markdown", "id": "0bd54e43", "metadata": {}, "source": [ "$$\n", "Precision = \\frac{tp}{tp + fp} = \\frac{162}{162 + 33} = 0.8307692307692308\n", "\n", "Recall = \\frac{tp}{tp + fn} = \\frac{162}{162 + 4} = 0.9759036144578314\n", "$$\n", "\n", ":::{note}\n", "Q: According to the confusion matrix, how did the model do? A: Not too bad; there are a good number of true negatives but also several false negatives. \n", ":::" ] }, { "cell_type": "markdown", "id": "7a9922ae", "metadata": {}, "source": [ "Let's revisit the terms we saw earlier with the help of the confusion matrix's mapping of $\\frac{TP}{TN}$ and $\\frac{FP}{FN}$ :\n", "\n", "🎓 Precision: $\\frac{TP}{TP + FP}$ The fraction of relevant instances among the retrieved instances (e.g. which labels were well-labeled)\n", "\n", "🎓 Recall: $\\frac{TP}{TP + FN}$ The fraction of relevant instances that were retrieved, whether well-labeled or not\n", "\n", "🎓 f1-score: $\\frac{2 * precision * recall}{precision + recall}$ A weighted average of the precision and recall, with best being 1 and worst being 0\n", "\n", "🎓 Support: The number of occurrences of each label retrieved\n", "\n", "🎓 Accuracy: $\\frac{TP + TN}{TP + TN + FP + FN}$ The percentage of labels predicted accurately for a sample.\n", "\n", "🎓 Macro Avg: The calculation of the unweighted mean metrics for each label, not taking label imbalance into account.\n", "\n", "🎓 Weighted Avg: The calculation of the mean metrics for each label, taking label imbalance into account by weighting them by their support (the number of true instances for each label).\n", "\n", ":::{seealso}\n", "Can you think which metric you should watch if you want your model to reduce the number of false negatives?\n", ":::" ] }, { "cell_type": "markdown", "id": "fda71ff7", "metadata": {}, "source": [ "## Visualize the ROC curve of this model\n", "\n", "This is not a bad model; its accuracy is in the 80% range so ideally you could use it to predict the color of a pumpkin given a set of variables.\n", "\n", "Let's do one more visualization to see the so-called 'ROC' score:" ] }, { "cell_type": "code", "execution_count": 11, "id": "f5b36add", "metadata": { "attributes": { "classes": [ "code-cell" ], "id": "" } }, "outputs": [ { "data": { "text/plain": [ "" ] }, "execution_count": 11, "metadata": {}, "output_type": "execute_result" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAiMAAAGdCAYAAADAAnMpAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8o6BhiAAAACXBIWXMAAA9hAAAPYQGoP6dpAABV0UlEQVR4nO3dd3xUVf7/8dfMJJNGChCSQAiEDlJSQBCQtUVZC+raEFxF17KroCjqCjbEhmtBQVj9ra66+10pYldYLCgqgouQhN57SyAE0jMzmbm/Py5VQRLI5M4k7+fjkcfcubl35pNLzLw959xzbIZhGIiIiIhYxG51ASIiItKwKYyIiIiIpRRGRERExFIKIyIiImIphRERERGxlMKIiIiIWEphRERERCylMCIiIiKWCrG6gOrw+Xzs2rWL6OhobDab1eWIiIhINRiGQUlJCS1atMBuP3H7R1CEkV27dpGSkmJ1GSIiInIKtm/fTsuWLU/4/aAII9HR0YD5w8TExFhcjYiIiFRHcXExKSkphz/HTyQowsihrpmYmBiFERERkSBzsiEWGsAqIiIillIYEREREUspjIiIiIilFEZERETEUgojIiIiYimFEREREbGUwoiIiIhYSmFERERELKUwIiIiIpaqcRj5/vvvGTRoEC1atMBms/Hxxx+f9Jx58+aRmZlJWFgY7du355133jmFUkVERKQ+qnEYKSsrIy0tjSlTplTr+M2bN3PppZdy3nnnkZuby7333sttt93GF198UeNiRUREpP6p8do0F198MRdffHG1j3/99ddp06YNL730EgBdunRh/vz5vPzyywwcOLCmby8iIiL1jN8Xylu4cCFZWVnH7Bs4cCD33nvvCc9xuVy4XK7Dz4uLi/1VnoiISPAyDFj8TyjYcMovsWVfGRv3lnLusLE4mqTWXm014PcwkpeXR2Ji4jH7EhMTKS4upqKigoiIiF+dM378eMaNG+fv0kRERILbms9h1v2n9RKpB7+++vkqLhyYevo1nQK/h5FTMWbMGEaNGnX4eXFxMSkpKRZWJCIiEmC8VTD3KXO7w0BI6lbtUw+Ue/hiZR57S81eiIxWcZx7Zg9/VFktfg8jSUlJ5OfnH7MvPz+fmJiY47aKAISFhREWFubv0kRERILX0mlQsBYimsDVb0B4bLVO+2zpLsZ8uJxSVxVNopy8dF0a/Tsl+LnY3+b3MNK3b19mz559zL6vvvqKvn37+vutRURE6idPBcwbb24PuL9aQaTS42XcZ6uYtmgbAL1TmzBpSAZJseH+rLRaahxGSktL2bDhyECZzZs3k5ubS5MmTWjVqhVjxoxh586d/Pvf/wbgL3/5C5MnT+avf/0rf/rTn/jmm2947733mDVrVu39FCIiIg3Jz29C8U6IaQln3nbSwzfuLWX4u9msySvBZoMR57Vn5AUdCHEExtynNQ4jixcv5rzzzjv8/NDYjmHDhvHOO++we/dutm3bdvj7bdq0YdasWdx3331MnDiRli1b8uabb+q2XhERkVNRWQQ/mNNlcN4YCP3tlo2PcnbwyEcrKHd7iW/k5OXB6Qzo0KwOCq0+m2EYhtVFnExxcTGxsbEUFRURExNjdTkiIiLWmfukGUaadYY7F4DdcdzDKtxeHv9kBTOX7ACgb9umTLw+nYSYuuuWqe7nd0DeTSMiIiLHUZIHP71mbp//2AmDyLr8Eoa/m836PaXYbDDygg7cfX4HHHZbHRZbfQojIiIiweK758FTDi3PhM6X/urbhmEwc8kOHv9kBZUeH82iw5h4fTr92sVbUGz1KYyIiIgEg30bIftf5nbWE2A7tpWjzFXFYx+v4MOcnQAM6BDPy4PTiW8U+FNlKIyIiIgEg59eA18VtL8QUs8+5lurdxczfGo2m/aWYbfB/Rd14s5z2mEP0G6ZX1IYERERCWReD5QVwMavzedn3nr4W4ZhMG3RdsZ9thJXlY+kmHAmDcmgd5smFhV7ahRGREREApnXA7tzoHAz2ByHW0VKKj08/NEKPlu6C4DzOjXjpevSaRLltLLaU6IwIiIiEuh2LjEfW54JYdGs2FnEiKnZbNlXTojdxoMDO3H7gLZB0y3zSwojIiIigW6HGUaMtufwfwu38PTnq3F7fSTHRTBpSAY9Wze2uMDTozAiIiISyAwf7MoG4MUNyUzZuBKArC6JvHhtD+Iig69b5pcURkRERAJZ/kqoLKKccP7fxjhCHTZGX9yFP/VPxWYLzm6ZX1IYERERCVCGYfDzvM/oDSzwdqF5k2gmD8kkLSXO6tJqVWAs1yciIiLHOFDu5vZ/L6Fy/TwAChPO4vO7B9S7IAJqGREREQk4S7bu555pORQcKGJy2BoArr1qMLaIUIsr8w+FERERkQDh8xm88cMmXvhiLVU+gzHR3xDu8UBkU2zxHa0uz28URkRERAJAYZmb+9/L5du1ewGDvyd/ySX7/m1+s9vVv1qLpj5RGBEREbHYos2F3DMth7ziSsJD4ON2/6Xz1v+Y3zznIej4e2sL9DOFEREREYv4fAavfbeRCV+tw+szaB8fzvstphG3bqZ5wMUvQMYfoWCttYX6mcKIiIiIBQpKXdw3I5cf1hcAcG1aM8YzkZC1n5tr0FwxBdKHgLvc4kr9T2FERESkji3YWMDI6bnsLXERHmrnmUvbctW6h7Bt+hYcTrjmbehymdVl1hmFERERkTri9Rm8+s16Js1dj8+ADgmNeO2atrT/8k+wYxGERsGQqdD2XKtLrVMKIyIiInVgT3El987IZcHGfQBc16sl485PIGLGNZC/AsJj4YYPIOVMiyutewojIiIifvbD+r3cNyOXglI3kU4HT1/Zjava+uDfl0LhRohKgBs/gqRuVpdqCYURERGR0+GtAozjfqvK62PS3A289v0GDAO6JkYz8foM2jvy4a2roHgnxLaCmz6Gpu3qtOxAojAiIiJyqr54BBZOPuG3Q4BRwKiwgzuKgP931AHxHeHGjyE22W8lBgOFERERkZryemDrQvjp76f+Gil94PqpEBX/28c5QqFRkvlYTymMiIiI1JTXA989B4YPOl8GV5itIx6vweRv1/P2j1sA6JIUwwvX9KBV08hfv0Z4XPWmeHeEQkzz2qs9ACmMiIiI1NSOn2Hrj2CzwwVjIaIxOw9UcPfUbLK3HQAaMaxva8Zc0oXwUIfV1QY8hREREZGaMAz49hlzO+16aNaRr1bl88DMpRRVeIgOD+H5q3twcff63ZpRmxRGREREqqt4N/w4Ebb/DxxO3H3v42+fr+Kf8zcDkNYylleHZB6/W0ZOSGFERETkZPZtNEPI0mngdQNQ1HkwN72Xx9KdJQD8qX8bRl/cGWeI3cpKg5LCiIiIyInsyoH5r8CqTzg8l0irvixpcQM3L2hCibuE2IhQXrw2jQvPSLSy0qCmMCIiInI0w4DN35khZNO3R/Z3/D3us+7hmeWx/GveVgAyWsbw6g09adlY3TKnQ2FEREQEwOeFNZ/D/JfNFhEAmwO6XwP9R7LFkcqIadms2GkGkT/3bMQDl2UQGqEgcroURkRE/KlsH7x/C5TkWV2JnExlEZQe/HcKCYfMm6DvCGjcms+X7WL0B/MpdVXRODKUCVd14bwmBeDQ+JDaoDAiIlJbvB4oKzBn1Dw0W+Z3z5lN/hIcwmOh9x3Q+8/QqBmVHi9PfrScqf/bBsCZqY2ZNCSD5o1CoCykXs+KWpcURkREaovXY/6fdXis+SFVuBkWv21+b9CkBr0QWlCw2SGpO4RFA7BxbynD381mTV4JNhsMP7c992Z1IORQa0g9nxW1LimMiIj4y7fPgs8D7c6HnsOsrkZq4KOcHTzy0QrK3V6aRjl55fp0BnRoZnVZ9ZbCiIiIP+Qth+Uzze2sJywtRaqvwu1l7KcreG/xDgD6tm3KxOvTSYgJt7iy+k1hRETEH+Y+CRjQ7WponmZ1NVIN6/NLGD41m3X5pdhscM/5Hbjngg447NVYzE5Oi8KIiEht27YQ1n8J9hA47xGrq5FqmLl4O499soJKj49m0WFMHJxOv/bxVpfVYCiMiIjUpqMXUcscpkGrAa7MVcVjn6zgw+ydAAzoEM+E69JpFh1mcWUNi8KIiEht2voj7FwCoZFwzl+trkZ+w5q8Yoa/m83GvWXYbTDqwo7cdW577OqWqXMKIyIitcXnhZ/fNLfPuhOik6ytR47LMAym/7ydJz5diavKR1JMOJOGZNC7TROrS2uwFEZERGrLivdh/xaIaAz9R1pdjRxHSaWHhz9awWdLdwFwbqdmTLgunSZRTosra9gURkREaoOnEr5/3tzue7c58ZkElBU7ixgxNZst+8px2G38dWAnbh/QVt0yAUBhRESkNvz8JhTvgqhm0OsWq6uRoxiGwX9+2spTn6/G7fXRIjacV4dm0rN1Y6tLk4MURkRETldlEfzwkrnd8xZzkTUJCMWVHkZ/sIzZy80F8LK6JPLitT2Ii1S3TCBRGBEROV0LXoWKQmjaHjpeZHU1ctDS7QcYMS2b7YUVhDpsPPT7ztx6dhtsNnXLBBqFERGR01GSDwunmNvnjjEnOhNLGYbB2z9uYfx/V+PxGrRsHMHkoZmkp8RZXZqcgP6rERE5Hd+/AJ5ySO4FHS+GfeusrqhBO1Du5sH3l/HVqnwAft81ib9d04PYiFCLK5PfojAiInKqCjfBkrfN7awnQM3/lsretp+7p+aw80AFToedRy7twk19W6tbJggojIiInKpvngFfFbS7ANoMAHe51RU1SD6fwZvzN/H8nLVU+QxaN41kytBMuiXr9upgoTAiInIqdi8zJzkDyBprbS0NWGGZmwdmLuWbNXsAuKxHc8Zf1Z3ocHXLBBOFERGpHTuzYdO3VldRd9bMMh+7XQ3N06ytpYH6eUsh90zLYXdRJc4QO08M6sqQ3inqlglCCiMicvrKC+HfV4KryOpK6pY9BM57xOoqGhyfz+C17zYy4at1eH0GbeOjmHJDJl2ax1hdmpwihRERqTmvB8oKICoeHKEw/2UziMS1gjbnWF1d3WmfBU3bHXnuCIVGSeaj+EVBqYv7ZuTyw/oCAP6QkczTV3YjKkwfZ8FM/3oiUnNeD5TmmeuvlO6BRf8w91/yUsOe9MsRCjHNra6i3lq4cR8jp+ewp8RFeKidJy/vxrW9Wqpbph6wn8pJU6ZMITU1lfDwcPr06cOiRYt+8/hXXnmFTp06ERERQUpKCvfddx+VlZWnVLCIBJjvnoOqSmjVDzpcaHU1Ug95fQYTv17PDW/+xJ4SFx0SGvHpiLO57kyND6kvatwyMmPGDEaNGsXrr79Onz59eOWVVxg4cCBr164lISHhV8dPnTqV0aNH89Zbb9GvXz/WrVvHzTffjM1mY8KECbXyQ4iIRQrWQ85/zG3NsyF+sKekknun57Jg4z4Aru3ZknFXdCXSqYb9+qTGLSMTJkzg9ttv55ZbbuGMM87g9ddfJzIykrfeeuu4xy9YsID+/fszdOhQUlNTueiiixgyZMhJW1NEJAh89zcwfNDpEmjVx+pqpJ6Zv76ASyb+wIKN+4h0OphwXRovXJumIFIP1SiMuN1ulixZQlZW1pEXsNvJyspi4cKFxz2nX79+LFmy5HD42LRpE7Nnz+aSSy454fu4XC6Ki4uP+RKRALNnNaydBdjggsetrkbqkSqvj5e+XMuNb/2PglI3nZOi+XTE2VyV2dLq0sRPahQvCwoK8Hq9JCYmHrM/MTGRNWvWHPecoUOHUlBQwNlnn41hGFRVVfGXv/yFhx9++ITvM378eMaNG1eT0kSkLhnGkUGraUMgoYu19Ui9kVdUyT3Tc1i0uRCAIb1bMXbQGYSHOiyuTPzplAaw1sS8efN49tln+fvf/052djYffvghs2bN4qmnnjrhOWPGjKGoqOjw1/bt2/1dpojUxObvYFcOOJxw3hirq5F6Yt7aPVwy6QcWbS4kyulg0pAMxl/VXUGkAahRy0h8fDwOh4P8/Pxj9ufn55OUlHTccx577DFuvPFGbrvtNgC6d+9OWVkZd9xxB4888gh2+6/zUFhYGGFhYTUpTUTqis8H3z5jbmcOM+cWETkNHq+Pl75cx+vfbQSga4sYJg/NpE18lMWVSV2pUcuI0+mkZ8+ezJ079/A+n8/H3Llz6du373HPKS8v/1XgcDjMlGsYRk3rFRGrrfoI8ldAaCT0u8fqaiTI7TpQwfX/+OlwELmpb2s+uLOfgkgDU+MhyaNGjWLYsGH06tWL3r1788orr1BWVsYtt9wCwE033URycjLjx48HYNCgQUyYMIGMjAz69OnDhg0beOyxxxg0aNDhUCIiQcLrgW+eNrd7DDZnYBU5RV+vyueB95dyoNxDdFgIf7umB5d016RxDVGNw8jgwYPZu3cvjz/+OHl5eaSnpzNnzpzDg1q3bdt2TEvIo48+is1m49FHH2Xnzp00a9aMQYMG8cwzz9TeTyEidSP731C4CSLjoce1VlcjQcpd5eP5OWt4c/5mAHq0jGXykExaNY20uDKxis0Igr6S4uJiYmNjKSoqIiZGCyGJWMJdBpMyoDQfLnoGUvtDfCdw6gNEqm97YTkjpuWwdPsBAP7Uvw2jL+6MM8Tv91OIBar7+a2ZY0Sken56zQwica0h44+wf7PVFUmQmbMijwffX0pJZRUx4SG8eG0aF3U9/s0P0rAojIjIyZUXwo8Tze3zHzVv6RWpJleVl/Gz1/DOgi0AZLSK49UhGbRsrFY1MSmMiMjJzZ8ArmJI7AbdrjEXxhOphq37yhgxNYflO4sA+PPv2vLAwE6EOtQtI0cojIjIbyvaCf87ONvqBWPhOHMDiRzP58t2MfqD5ZS6qmgcGcpL16VxfufEk58oDY7CiIj8tnnjweuC1v2hw4VWVyNBoNLj5anPV/Hu/7YBcGZqYyYNyaB5bITFlUmgUhgRCRale8Hrrtv3LNoBue+a21lPgM1Wt+8vQWfT3lKGT81h9e5ibDa469x23JfVkRB1y8hvUBgRqWvFuyAs2vyqjvJC+GQ4rJ3t37p+S6dLIaW3de8vQeHjnJ08/NFyyt1emkY5eXlwOr/r2MzqsiQIKIyI1CVPBRRugSZtqhdGti+CmbdA8Q7zuRV3sUQ1gwt/sYq2IxQaJZmP0uBVuL088elKZiw2FzU9q20TJl6fQWJMuMWVSbBQGBGpS+X7oLLo5Mf5fLBwMswdB74qaNIOrn0Hmvfwe4nV4giFGE3bLbA+v4ThU7NZl1+KzQb3nN+Bey7ogMOuLj2pPoURkbri80HxzpPfFlteCB/fCevmmM+7XQ2XvQLhmn1YAsvMxdt5/JOVVHi8NIsOY+LgdPq113pFUnMKIyJ1pfIAlBWC7TcG8h3dLeMIg4v/Bj1v1sBRCShlrioe+2QFH2bvBODs9vG8PDidZtFhFlcmwUphRKSulO4Bwwv246xW7fPBwldh7pOB2S0jctCavGKGv5vNxr1l2G0w6sKO3Hlue3XLyGlRGBGpC54KKNltdrVUFh/7vfJC+OgvsP4L87m6ZSQAGYbBjJ+3M/bTlbiqfCTGhDHp+gz6tG1qdWlSDyiMiNSF8n3gKoHYlseGkW3/g/f/pG4ZCWilrioe/nA5ny7dBcA5HZsx4bo0mjZSt4zUDoUREX87NHA1NPxIyDB85sJzX48zu27ULSMBauWuIkZMzWFzQRkOu40HB3bijgFtsatbRmqRwoiIvx0auBrVxHzuKjHvltn8nfm829UwaGL1J0ETqQOGYfCf/23jqc9X4a7y0SI2nFeHZtCzdROrS5N6SGFExN8ODVx1OKFiP3z5KJQXqFtGAlZxpYcxHyxn1vLdAGR1SeCFa9JoHGXBpHvSICiMiPjT0QNXAbL/bQaR2JZw/TR1y0jAWbbjACOm5rCtsJwQu43RF3fm1rPbYFNgFj9SGBHxp6MHrhbvgtWfmfsvfFpBRAKKYRi8/eMWxv93NR6vQcvGEUwemkl6SpzVpUkDoDAi4i+/HLi6+C1zDpGk7tDqLKurEzmsqNzDg+8v5ctV+QAM7JrI89ekERuhtYekbiiMiPjL0QNXC9bDhq/N/d0HW1qWyNFytu1nxNQcdh6owOmw88ilXbipb2t1y0idUhgR8ZfSPcDBgas/v2nua3ueuWKviMV8PoN/zt/M3+asocpn0LppJJOHZNK9ZazVpUkDpDAi4g+HBq6GxcCuXNj+P7A54Mxbra5MhP1lbu6fuZRv1uwB4NIezRl/VXdiwtUtI9ZQGBHxh0MDV2OSYdE/zH2dLzUHshbttLY2adAWbynk7mk57C6qxBliZ+ygMxjau5W6ZcRSCiMite3ogavbfoQ9qyAkHHoOs7oyacB8PoPXv9/IS1+uw+szaBsfxeShmZzRQmsgifUURkRq26GBqxGxsOjgWJFu10CkFhQTaxSUuhj13lK+X7cXgCvTW/D0H7rTKEwfARIY9JsoUtsODVzdNA8ObDWneU/THTRijZ827eOeaTnsKXERHmrnycu7cW2vluqWkYCiMCJSmwwDyvaCIxQWv23uS7/hyLoz7nKwO8zvi/iR12cw5dsNvPL1OnwGtE9oxJShmXRK0hpIEngURkRqnQFr50DZHohqBl3/YO72eqCiEOI7q8tG/GpPSSX3zcjlxw37ALimZ0uevKIrkU79yZfApN9MkdrmLoNlM83tnjdDSBgYPijNh9hW5jwjaiIXP/lxQwEjp+dSUOoiItTB01d24+qeLa0uS+Q3KYyI1LYVH4K7BOJaQceB5r6SPRAZD806gkP/2Untq/L6mDR3Pa9+uwHDgE6J0Uy5IZP2CY2sLk3kpPRXUaS2VBbBui9h9Sfm8zNvA3sIlBearSPNOkFohLU1Sr2UX1zJ3dNyWLS5EIAhvVMYO6gr4aEOiysTqR6FEZHTUbwb1s6GNbNg8/fg85j74ztC6gBzwKrXDUk9ILKJtbVKvTRv7R5GvbeUwjI3UU4Hz17VnSvSk60uS6RGFEZEamrvOljzuRlAdi4+9ntNO0DzHnDGleYKvYcGrMa0sKRUqb+qvD5e+modr83bCMAZzWOYckMmbeKjLK5MpOYURkROxueDnUuOBJB964/9fsszzaneO10K8R1gyw9geDVgVfxm14EK7pmWw+Kt+wG48azWPHJpF3XLSNBSGBE5nioXbP7BDCBrZ5vB4hB7KLQ9xwwgHS+GmOZHvmcY5mNZodkaogGrUsvmrs7n/plLOVDuIToshL9d04NLujc/+YkiAUx/JaX+K9phTkDmLqve8SW7YcNc846YQ5zR0PEiM4C0vxDCT7KeR0RjSOisAatSa9xVPl74Yg1v/LAZgB4tY5k8JJNWTSMtrkzk9CmMSP3i9UBZAUTFm7Oc7l0L/74SSnbV/LUaJUHnS8wAkjrAvCOmOkIbQdMkM5CI1ILtheXcPS2H3O0HALilfyqjL+5MWIi6ZaR+UBiR+sXrgdI8CI+F/BXwf1cdHETaCbpcVr3XCImAdudBi0yw22v2/jabOYBVXTNSS75YmceDM5dSXFlFTHgIL1ybxsCuSVaXJVKr9BdT6qdtC+G9YWZXS4sM+OOHdXdrrYKI1AJXlZfxs9fwzoItAKSnxDF5aAYtG6tbRuof/dWU+mfbT/D1E1BVCa3PhiHTTj7GQySAbN1XxoipOSzfWQTAHb9ry4MDOxHqqGFLnUiQUBiR+mX1Z/DFI+attR1/D9e+o0GkElRmLdvN6A+WUeKqIi4ylAnXpXF+50SryxLxK4URqT98Xpj9gBlEuv4BrnrDHMQqEgQqPV6enrWK//y0DYBerRszaUgGLeIUpqX+UxiR+uPANnAVmwFk0CQFEQkam/aWMnxqDqt3FwNw17ntGHVhR0LULSMNhMKI1B/7NpiPMcnmAnUiQeCT3J08/OFyytxemkY5mTA4nXM6NrO6LJE6pb/YUn8UHJymPbaVtXWIVEOF28u4z1Yy/eftAJzVtgkTr88gMSbc4spE6p7CiNQfh9aMiUuxtg6Rk9iwp4Th7+awNr8Emw3uPr8DIy/ogMOuNYykYVIYkfqjQGFEAt/7S3bw2McrqPB4iW8UxsTr0+nfPt7qskQspTAi9cehMSNJ6Rq8KgGn3F3FYx+v5IPsHQD0b9+UlwenkxCtbhkRhRGpH1wl5gJ3AK3PUhiRgLI2r4S73l3Cxr1l2G1wX1ZH7jqvvbplRA5SGJH64VCrSGS8FqiTgGEYBjN+3s7YT1fiqvKRGBPGxOszOKttU6tLEwkoCiNSPxQcDCPxHaytQ+SgUlcVj3y0nE9yzRWjz+nYjAnXpdG0UTVXfxZpQBRGpH44dCdN0/bW1iECrNxVxN1Tc9hUUIbDbuOBizrx59+1xa5uGZHjUhiR+uHQnTRqGRELGYbBf/63jac+X4W7ykfz2HBeHZJBr9Q6WjFaJEgpjEj9cLhlRGFErFFc6WHMh8uZtcwcSH1B5wRevDaNxlFOiysTCXwKIxL8fD7Yt9HcVsuIWGD5jiKGT81mW2E5IXYboy/uzK1nt8FmU7eMSHWc0ipMU6ZMITU1lfDwcPr06cOiRYt+8/gDBw4wfPhwmjdvTlhYGB07dmT27NmnVLDIr5TsAk+5uR5N41Srq5EGxDAM3vlxM1e/toBtheUkx0Uw8y99uW1AWwURkRqoccvIjBkzGDVqFK+//jp9+vThlVdeYeDAgaxdu5aEhIRfHe92u7nwwgtJSEjg/fffJzk5ma1btxIXF1cb9YscGS/SOFXzi0idKSr38NcPlvLFynwALjojkReuSSM2Ur+DIjVV4zAyYcIEbr/9dm655RYAXn/9dWbNmsVbb73F6NGjf3X8W2+9RWFhIQsWLCA01PyPNDU19fSqFjnaoTlGNF5E6kjOtv2MmJrDzgMVOB12Hr6kM8P6pao1ROQU1aibxu12s2TJErKyso68gN1OVlYWCxcuPO45n376KX379mX48OEkJibSrVs3nn32Wbxe7wnfx+VyUVxcfMyXyAkdvpNGt/WKfxmGwRvfb+La1xey80AFrZpE8sGd/bi5v8aHiJyOGrWMFBQU4PV6SUxMPGZ/YmIia9asOe45mzZt4ptvvuGGG25g9uzZbNiwgbvuuguPx8PYsWOPe8748eMZN25cTUqThkx30kgd2F/m5oGZS5m7Zg8Al3ZvzviruxMTrm4ZkdPl97tpfD4fCQkJ/OMf/8DhcNCzZ0927tzJCy+8cMIwMmbMGEaNGnX4eXFxMSkpWolVTkCzr4qfLd5SyD3TcthVVIkzxM7jl53BDX1aqTVEpJbUKIzEx8fjcDjIz88/Zn9+fj5JSUnHPad58+aEhobicDgO7+vSpQt5eXm43W6czl/fgx8WFkZYmKZMlmrwVEDRdnNbLSNSy3w+g9e/38hLX67D6zNoEx/F5KEZdG0Ra3VpIvVKjcaMOJ1Oevbsydy5cw/v8/l8zJ07l759+x73nP79+7NhwwZ8Pt/hfevWraN58+bHDSIiNbJvI2BAeCxExVtdjdQj+0pd3PLOzzw/Zy1en8EV6S347O6zFURE/KDG84yMGjWKN954g3/961+sXr2aO++8k7KyssN319x0002MGTPm8PF33nknhYWFjBw5knXr1jFr1iyeffZZhg8fXns/hTRcR48XUZO51JL/bdrHJZN+4Lt1ewkLsfO3q7vzyuB0GoVpnkgRf6jxf1mDBw9m7969PP744+Tl5ZGens6cOXMOD2rdtm0bdvuRjJOSksIXX3zBfffdR48ePUhOTmbkyJE89NBDtfdTSMOl8SJSi7w+g79/u4GXv16Hz4D2CY2YMjSTTknRVpcmUq/ZDMMwrC7iZIqLi4mNjaWoqIiYmBiry5FA8uEdsGwGnP8Y/O4Bq6uRILa3xMW9M3L4ccM+AK7ObMlTV3Yl0qnWEJFTVd3Pb/1XJsFNq/VKLfhxQwEjp+dSUOoiItTBU1d245qeLa0uS6TBUBiR4GUYmn1VTovXZzBx7npe/WY9hgGdEqOZckMG7RPULSNSlxRGJHiV7gFXMWCDJm2trkaCTH5xJfdMy+F/mwsBuP7MFMYO6kqE03GSM0WktimMSPA6dCdNXCsIDbe2Fgkq363by6gZuewrcxPldPDsVd25Ij3Z6rJEGiyFEQleGi8iNVTl9fHSV+t4bd5GALo0j2HK0AzaNmtkcWUiDZvCiAQvjReRGth1oIJ7puWweOt+AG48qzWPXNqF8FB1y4hYTWFEgpdW65Vq+mZNPqPeW8qBcg/RYSE8d3UPLu3R3OqyROQghREJXlqtV07C4/Xxwhdr+cf3mwDonhzL5KEZtG4aZXFlInI0hREJTlVu2L/V3NaYETmOHfvLGTE1h9ztBwC4uV8qYy7pTFiIumVEAo3CiASn/ZvB8IKzEUSruV2O9cXKPB6cuZTiyipiwkN44do0BnY9/sriImI9hREJTgXrzMem7bRAnhzmqvLy3H/X8PaPWwBIT4nj1SEZpDSJtLYwEflNCiMSnLL/bT42T7e0DAkc2/aVM3xqNst3FgFw+4A2PDiwM86QGi9OLiJ1TGFEgs+WH2H9l2APgf4jra5GAsDs5bt56P1llLiqiIsM5aVr07igS6LVZYlINSmMSHAxDPj6CXM78yazm0YarEqPl2dmreb/fjIHM/dq3ZhJQzJoERdhcWUiUhMKIxJc1v4XdiyCkAj43V+trkYstLmgjOHvZrNqdzEAd53bjvsu7EioQ90yIsFGYUSCh88Lc580t8+6E2J0F01D9UnuTh7+cDllbi9Nopy8PDidczo2s7osETlFCiMSPJbNgL2rITxOY0UaqEqPl3GfrWTaou0A9GnThElDMkiM0UKJIsFMYUSCg6cSvn3W3B4wCiLiLC1H6t6GPaUMfzebtfkl2Gxw93ntueeCDoSoW0Yk6CmMSHBY/BYUbYfoFtD7DqurkTr2wZIdPPrxCio8XuIbhfHK4HTO7hBvdVkiUksURiTwVRbDDy+a2+eOhlDdKdFQlLurePyTlby/ZAcA/ds35eXB6SREq1tGpD5RGJHAt+BVKN9nLoiXfoPV1UgdWZdfwvB3s1m/pxS7De7N6sjw89rjsGvGXZH6RmFEAlvpHlg4xdy+4DFw6Fe2vjMMg/cWb2fspyup9PhIiA5j0pAMzmrb1OrSRMRP9JddAtv3L4CnDFpkQpfLra5G/KzUVcWjHy3n49xdAPyuYzMmXJdGfKMwiysTEX9SGJHAVbgZFr9tbmc9oQXx6rlVu4oZMTWbTQVlOOw27r+oI3/5XTvs6pYRqfcURiRwffss+DzQ7nxoe47V1YifGIbBu//bxpOfr8Jd5aN5bDiThmRwZmoTq0sTkTqiMCKBKW85LJ9pbl8w1tpaxG9KKj2M/nA5s5btBuCCzgm8eG0ajaOcFlcmInVJYUQC09wnAQO6XgUt0q2uRvxg+Y4iRkzLZuu+ckLsNh76fWduG9AGm7rjRBochREJPFt+hPVfgj0Ezn/U6mqklhmGwb8WbOHZ2Wtwe30kx0Xw6tAMMls1tro0EbGIwogEFsOAr58wtzNvgqbtLC1HaldRhYeH3l/GnJV5AFx0RiIvXJNGbGSoxZWJiJUURiSwrP0v7FgEIRFwzkNWVyO1KHf7AUZMzWbH/gpCHTYevqQLN/dLVbeMiCiMyAn4fGA/wQJkhgEb5kLe0tp/39yp5uNZd0J0Uu2/vtQ5wzD45/zNPPffNVT5DFo1iWTy0Ax6tIyzujQRCRAKI/JrhgF710BEY4hpfuz39m+F2Q/C+i/89/7hcdB/pP9eX+rMgXI3D8xcyter9wBwSfcknru6BzHh6pYRkSMURuTXyguhZBeERR/Z562Cn/4O88aDpxzsoXDGFbW/aJ3NBt2ugYi42n1dqXNLthZy99QcdhVV4gyx89hlZ/DHPq3ULSMiv6IwIsfy+WD/FqgsOrJvx2L47F7IX24+b90fLnsZmnWyokIJcD6fwf/7fhMvfrkWr8+gTXwUk4dm0LVFrNWliUiAUhiRY5XthdJ8sDnAVQKzHoCf3wQMs9vmwqfMlXNPNJ5EGrR9pS7un7mUeWv3AnBFegue+UN3GoXpT42InJj+QsgRPi8c2GIGjR255tiQMrOvn7QhcNHTEBVvZYUSwP63aR/3TM8hv9hFWIidcZd3ZfCZKeqWEZGTUhiRI0rzoXQvVOyH+a8ABjRpZ3bJaG0YOQGvz+Dv327g5a/X4TOgXbMoptyQSeekGKtLE5EgoTAiJq8HCreAwwmL/wkY0D4LBr8LoeFWVycBam+Ji/tm5DJ/QwEAV2e25KkruxLp1J8WEak+/cUQU8luqNgHRTthV445Ffvv/qogIie0YEMBI2fksrfERUSog6eu7MY1PVtaXZaIBCGFEQFPpTl/SEj4wcGqQPsLIaaFtXVJQPL6DCbOXc+r36zHMKBjYiOmDM2kQ2L0yU8WETkOhRE52CqyHwrWwr71EBppziEi8gv5xZWMnJ7DT5sKAbj+zBTGDupKhNNhcWUiEswURhq6KpfZKuKMgMVvmfvSrgdnlLV1ScD5ft1e7puRy74yN1FOB89e1Z0r0pOtLktE6gGFkYbO6wGvGzZ/B8W7zLlEOl0MNjuEa5IqgSqvjwlfrePv8zYC0KV5DFOGZtC2WSOLKxOR+kJhRKCq8sgCdRk3gsdlzq4arlszG7rdRRXcMy2Hn7fsB+CPZ7Xi0UvPIDxU3TIiUnsURgTWzoaKQohuDm1+B7YQiFXze0P37Zo9jHovl/3lHhqFhfDc1d25rIcGNYtI7VMYaejKC2HVx+Z2r1vAUwGJ3TRmpAHzeH28+MVa/t/3mwDonhzL5KEZtG6q3wkR8Q+FkYbupylmAGncBpJ7mqvx6pbeBmvH/nLunpZDzrYDANzcL5Uxl3QmLETdMiLiPwojDVnRDlj8trnd6xZwl0OLdE101kB9uTKPB99fRlGFh5jwEJ6/Jo3fd0uyuiwRaQAURhqyec+B1wUJXaBJe4iIhUb68Glo3FU+xv93NW//uAWAtJQ4Jg/JIKVJpLWFiUiDoTDSUO1dC7nvmttpN4DhNbtqQpzW1iV1atu+ckZMy2bZjiIAbh/QhgcHdsYZYre4MhFpSBRGGqpvngLDBx0GQkJn8zbeRolWVyV1aPby3Tz0/jJKXFXERYby4jVpZJ2h3wERqXsKIw1R3nJY/Zk5sdk5D5mzsMalgkO/Dg1BpcfLM7NW838/bQWgZ+vGTBqSQXJchMWViUhDpU+fhmjtf83HTpdAiwwozYeoZtbWJHVic0EZI6Zms3JXMQB/Oacd91/UkVCHumVExDoKIw3RpnnmY/sLwG6HmOaWliN149OluxjzwTLK3F6aRDmZcF0a53ZKsLosERGFkQbHVQrbF5nbbc+1tBSpG5UeL+M+W8W0RdsA6N2mCZOuzyApVrdwi0hgUBhpaLYuAJ8H4lpDk7ZWVyN+tmFPKSOmZrMmrwSbDUac156RF3QgRN0yIhJATukv0pQpU0hNTSU8PJw+ffqwaNGiap03ffp0bDYbV1555am8rdSGQ100ahWp9z7M3sHlk+ezJq+E+EZh/N+f+nD/RZ0UREQk4NT4r9KMGTMYNWoUY8eOJTs7m7S0NAYOHMiePXt+87wtW7bwwAMPMGDAgFMuVmqBwki9V+6u4sGZSxn13lLK3V76tWvK7JFnc3aHeKtLExE5rhqHkQkTJnD77bdzyy23cMYZZ/D6668TGRnJW2+9dcJzvF4vN9xwA+PGjaNtW3UNWKYkH/asBGzQ5hyrqxE/WJdfwhWTf2Tmkh3YbXBfVkf+79Y+JERrfIiIBK4ahRG3282SJUvIyso68gJ2O1lZWSxcuPCE5z355JMkJCRw6623Vut9XC4XxcXFx3xJLdj8nfnYvAdENbW2FqlVhmHw3s/buXzyfNbvKSUhOox3bzuLkVkdcNhtVpcnIvKbajSAtaCgAK/XS2LisbM0JiYmsmbNmuOeM3/+fP75z3+Sm5tb7fcZP34848aNq0lpUh3qoqmXylxVPPLRcj7O3QXAgA7xvDw4nfhGYRZXJiJSPX4dyVZSUsKNN97IG2+8QXx89furx4wZQ1FR0eGv7du3+7HKBsIwjgoj51laitSeVbuKGfTqfD7O3YXDbuPBgZ341y29FUREJKjUqGUkPj4eh8NBfn7+Mfvz8/NJSvr1aq8bN25ky5YtDBo06PA+n89nvnFICGvXrqVdu3a/Oi8sLIywMP0xrVUF66F4JzjCoNVZVlcjp8kwDKYu2sa4z1bhrvKRFBPOq0MzODO1idWliYjUWI3CiNPppGfPnsydO/fw7bk+n4+5c+cyYsSIXx3fuXNnli9ffsy+Rx99lJKSEiZOnEhKSsqpVy41c6hVpNVZEKo1SIJZSaWHMR8u5/NluwE4v3MCL16bRpMorbgsIsGpxpOejRo1imHDhtGrVy969+7NK6+8QllZGbfccgsAN910E8nJyYwfP57w8HC6det2zPlxcXEAv9ovfqbxIvXCip1FDJ+azdZ95YTYbfz195247ey22DVIVUSCWI3DyODBg9m7dy+PP/44eXl5pKenM2fOnMODWrdt24bdrkmVAoq3Crb8YG6303iRYGQYBv9euJVnZq3G7fWRHBfBq0MzyGzV2OrSREROm80wDMPqIk6muLiY2NhYioqKiImJsbqc4LN9EfzzQohoDA9uBLvD6oqkBooqPDz0/jLmrMwD4MIzEnnxmjRiI0MtrkxE5LdV9/Nba9M0BIe6aNr8TkEkyORuP8CIqdns2F9BqMPGmIu7cEv/VGw2dcuISP2hMNIQbPzWfNQtvUHDMAz+OX8zf5uzBo/XIKVJBJOHZJKWEmd1aSIitU5hpL5zlcKOgwsZavBqUDhQ7uaBmcv4erV5C/0l3ZN47uoexISrW0ZE6ieFkfpu6wLwVUFca2jSxupq5CSWbC3k7qk57CqqxOmw89hlXfjjWa3VLSMi9ZrCSLCqLIbwGMidan6dSNHB2Wt1F01A8/kM/vHDJl74Yi1en0Fq00gmD82kW3Ks1aWJiPidwkgwqiyCgo2Q1A2+HgeleSc/p+PF/q9LTsm+Uhf3z1zKvLV7Abg8rQXPXtWdRmH6z1NEGgb9tQtGnkrwusDwQtkec9+gSRAWffzjo+IhdUDd1SfVtmhzIXdPyya/2EVYiJ0nLu/K9WemqFtGRBoUhZFg5CmHKheUF4JhrvVD+g3g0D9nsPD5DP4+bwMTvlqHz4B2zaKYckMmnZM0j46INDz69ApGrhIzhJSZzfpENFEQCSJ7S1yMei+XH9YXAHBVZjJPXdGNKHXLiEgDpb9+wcYwzDEjcCSMNEqwrh6pkQUbChg5I5e9JS4iQh08eUVXru2lBSNFpGFTGAk2ngpzvAj2I2EkqpmlJcnJeX0Gk+auZ9I36zEM6JjYiClDM+mQeIJxPiIiDYjCSLCpqjTHi4REQJnZzK+WkcC2p7iSkdNzWbhpHwCDe6XwxOVdiXBqan4REVAYCT6eCqhyHwwjahkJdN+v28t9M3LZV+Ym0ung2T9058qMZKvLEhEJKAojwcZTYc6oCgojAazK6+Plr9fx93kbMQzonBTNlBsyadeskdWliYgEHIWRYFN5AEKc5rYGsAak3UUVjJyWy6IthQDc0KcVj112BuGh6pYRETkehZFg4q0CdxmEhJnPD7eMKIwEim/X7GHUe7nsL/fQKCyE8Vd1Z1BaC6vLEhEJaAojwaSqwhy86ggzb/E9NIBV3TSW83h9vPjFWv7f95sA6JYcw+QhmaTGR1lcmYhI4FMYCSaeSvB5wBkJHtdR3TQKI1baeaCCu6dmk73tAAA390tlzCWdCQtRt4yISHUojASTqgqzRQSbOSW8123uV8uIZb5alc8DM5dSVOEhOjyEF67pwe+7Nbe6LBGRoKIwEkxcpWC3m9sVB8xHZzSERlhWUkPlrvLx3H/X8NaPmwFIaxnL5KGZpDSJtLgyEZHgozASLA5NA+84OHjVdXBKeHXR1LntheWMmJrN0h3mv8FtZ7fhr7/vjDPEbnFlIiLBSWEkWHjd5piRQ3fSHGoZ0Z00dWrOit08+P4ySiqriI0I5aVr08g6I9HqskREgprCSLDwlJtTwYc3MmdgrTxg7lfLSJ2o9HgZP3s1/1q4FYDMVnG8OjST5Dh1kYmInC6FkWDhqQSjCuwhwFFhRINX/W5LQRnDp2azclcxAH8+py0PXNSJUIe6ZUREaoPCSLCoqgBsR55XHBwzom4av/p06S4e/nA5pa4qmkQ5eem6NM7rpGsuIlKbFEaCRUUROEKPPNcAVr+q9HgZ99kqpi3aBkDv1CZMGpJBUmy4xZWJiNQ/CiPBwOcDd8mRwaugAax+tHFvKcPfzWZNXgk2G4w4rz0jL+hAiLplRET8QmEkGByaBj7sqBVfNWbELz7K2cEjH62g3O0lvpGTlwenM6CDrrGIiD8pjAQDTyV4XeBocmRf5aFuGrWM1IYKt5fHP1nBzCU7AOjbtikTr08nIUbdMiIi/qYwEgyqKsAAbAe7CTyV5m2+oJaRWrAuv4Th72azfk8pdhuMvKAjI85vj8NuO/nJIiJy2hRGgoG7HGxHfTAe6qIJCYewaEtKqg8Mw2Dmkh08/skKKj0+mkWHMen6DPq2a2p1aSIiDYrCSDCoPHD8wauR8ceGFKm2MlcVj328gg9zdgIwoEM8Lw9OJ75R2EnOFBGR2qYwEui8HrNlxOE8sq9yv/mo23pPyerdxQyfms2mvWXYbXD/RZ2485x22NUtIyJiCYWRQOepMAevOuOO7Dt8W6/CSE0YhsG0Rdt54rOVuKt8JMWEM2lIBr3bNDn5ySIi4jcKI4GuqtJsHTmmZeSA+agwUm0llR4e/mgFny3dBcB5nZrx0nXpNIlynuRMERHxN4WRQOep+PW+8kLzMTK+bmsJUit2FjFiajZb9pUTYrfx4MBO3D6grbplREQChMJIoHOVgN1x7L49q83HhM51X08QMQyD//tpK09/vhq310dyXASThmTQs3Vjq0sTEZGjKIwEMsM4zp00+2H/JnO7ze8sKSsYFFV4GP3BMv67Ig+ArC6JvHhtD+Ii1S0jIhJoFEYCWVWlOQ186FGzgO7MNh8bp2rMyAks3X6AEdOy2V5YQajDxpiLu3BL/1Rsug1aRCQgKYwEMs/BNWnCY4/s27nEfExKs6amAGYYBm/9uIXn/rsaj9cgpUkEk4dkkpYSZ3VpIiLyGxRGAllVJRi+I2NGDAN2LDa3m/ewrq4AdKDczQMzl/H16nwALu6WxHNX9yA2ItTiykRE5GQURgLZL++kKd4JZXvAHgIJZ1hTUwBasnU/90zLYeeBCpwOO49e1oUbz2qtbhkRkSChMBLIKosg5KgBl4daRRLOMNelaeB8PoM3ftjEC1+spcpnkNo0kslDM+mWHHvyk0VEJGAojAQqn9e8rddx1J00h8aLNE+3pKRAUljm5v73cvl27V4ABqW14Nk/dCM6XN0yIiLBRmEkUHkqwOs+siqvzwu7Dt5J0yLDuroCwKLNhdwzLYe84krCQuyMHdSVIb1T1C0jIhKkFEYC1aHbeiMPLmdfsBbcZeCMgqbtwVdlbX0W8PkMXvtuIxO+WofXZ9C2WRRThmbSpXmM1aWJiMhpUBgJVIcGrx76v/0dB7toWmSad9c0sDBSUOrivhm5/LC+AICrMpJ56spuRIXpV1hEJNjpL3mgcpeBzX7k+aHxIsk9ranHQgs2FjByei57S1yEh9p58opuXNuzpbplRETqCYWRQFV54MidNJ4KyF9pbrfsZVlJdc3rM3j1m/VMmrsenwEdEhrx9xsy6ZAYbXVpIiJSixRGAlGV2wwgh9akyVsGPg80SoSY5OOv5FvP7Cmu5N4ZuSzYuA+A63q1ZNzl3YhwOk5ypoiIBBuFkUBUVWEOYHUeHLx6dBdNA+ia+GH9Xu6bkUtBqZtIp4Nn/tCNP2S0tLosERHxE4WRQOSpAG8VOA7OmdFAxotUeX288vV6pszbgGFA56RoJg/NpH1CI6tLExERP1IYCUSeiiMtIBX7Yd9Gczs507qa/Gx3UQUjp+WyaEshAEP7tOLxy84gPFTdMiIi9Z3CSCByFR/VKnJworOm7SCisXU1+dG3a/cwakYu+8s9NAoL4dmrunN5WguryxIRkTqiMBJofD6oLD5yJ83hLpr6dxeNx+vjxS/X8v++2wRAt+QYJg/JJDU+yuLKRESkLimMBJqqSvC6IDQSDOPI4nj1bLzIzgMV3D01m+xtBwAY1rc1D1/ahbAQdcuIiDQ09pMf8mtTpkwhNTWV8PBw+vTpw6JFi0547BtvvMGAAQNo3LgxjRs3Jisr6zePb/AOTQPvcELRDijbA/ZQaN7D6spqzVer8rlk4g9kbztAdHgIr92QybgruimIiIg0UDUOIzNmzGDUqFGMHTuW7Oxs0tLSGDhwIHv27Dnu8fPmzWPIkCF8++23LFy4kJSUFC666CJ27tx52sXXS54Ks0XE7jjSRZPUDULCra2rFrirfDz1+Spu//diiio8pLWMZfY9A7i4e3OrSxMREQvZDMMwanJCnz59OPPMM5k8eTIAPp+PlJQU7r77bkaPHn3S871eL40bN2by5MncdNNN1XrP4uJiYmNjKSoqIiamni+Ktnc97FsHMS3gy8dgyw9w5m2Q8ccjx7jLzdaT1P5HJkYLcNsLyxkxLYel2w8AcOvZbXjo951xhpxS45yIiASB6n5+12jMiNvtZsmSJYwZM+bwPrvdTlZWFgsXLqzWa5SXl+PxeGjSpMkJj3G5XLhcrsPPi4uLa1JmcHMVmV00Pi/sOngnTZCPF5mzYjcPvr+MksoqYiNCefHaNC48I9HqskREJEDU6H9LCwoK8Hq9JCYe+0GSmJhIXl5etV7joYceokWLFmRlZZ3wmPHjxxMbG3v4KyUlpSZlBi9vlblAXkgYFKw1t52NIL6j1ZWdEleVl7GfrOAv/8mmpLKKzFZxzLrnbAURERE5Rp22kT/33HNMnz6djz76iPDwE4+BGDNmDEVFRYe/tm/fXodVWqiq4sjg1R0Hx4u0yDTHjwSZLQVlXP3aAv61cCsAfz6nLTP+3JeWjSMtrkxERAJNjbpp4uPjcTgc5OfnH7M/Pz+fpKSk3zz3xRdf5LnnnuPrr7+mR4/fvjMkLCyMsLDgGAtRqzyV5oJ4DueRwastg6+L5vNluxj9wXJKXVU0jgxlwnXpnNc5weqyREQkQNWoZcTpdNKzZ0/mzp17eJ/P52Pu3Ln07dv3hOc9//zzPPXUU8yZM4deverf5F21pqoCDJ95e2/+CnNfEI0XqfR4efij5YyYmkOpq4ozUxsze+QABREREflNNZ70bNSoUQwbNoxevXrRu3dvXnnlFcrKyrjlllsAuOmmm0hOTmb8+PEA/O1vf+Pxxx9n6tSppKamHh5b0qhRIxo10gJox6gsMbtk8paBrwoaJUJMstVVVcvGvaUMfzebNXkl2Gww/Nz23JvVgRCH7pYREZHfVuMwMnjwYPbu3cvjjz9OXl4e6enpzJkz5/Cg1m3btmG3H/kAeu2113C73VxzzTXHvM7YsWN54oknTq/6+sQwoLIIHGHHrtJ7aMG8APZRzg4e+WgF5W4v8Y2cvDw4nQEdmlldloiIBIkazzNihQYxz4inArYuNO+k+exuc6Xe8x+D9hf8+tiKA2CzQ+t+RxbUs0CF28vYT1fw3uIdAPRt25SJ16eTEBP8E7SJiMjp88s8I+JHrlLwlIPhNYMIHH+8iOEDVwkkdbc0iKzPL2H41GzW5Zdis8HICzpw9/kdcNgDvyVHREQCi8JIoHAdnNht91LzsWl7iIj79XEV+yGisTlDq0VmLt7OY5+soNLjo1l0GBOvT6dfu3jL6hERkeCmMBIIDANK90Bo+LHjRX7JVwXuCkjubMk08GWuKh77ZAUfZpvrCg3oEM+E69JpFt0Ab8MWEZFaozASCNxl4C4FZxTsWGzua3mcW6DLCyEq3rzLpo6tyStm+LvZbNxbht0G91/UiTvPaYdd3TIiInKaFEYCgavEnHnVXQ5le8Aeao4JOZrXY7aMNE6t07EihmEw/eftPPHpSlxVPpJiwpk0JIPebU68tpCIiEhNKIwEgsoD5i28hxbGS+oGIb+4I6V8H0QlQKO6m0CspNLDwx+t4LOluwA4t1MzJlyXTpMoZ53VICIi9Z/CiNV8XigrAGfkiceLVLnMcSWNU+tsnZoVO4sYMTWbLfvKcdht/HVgJ24f0FbdMiIiUusURqzmKjHHjITHHGkZSf7FeJHyQohpbo4X8TPDMPjPT1t56vPVuL0+kuMimDQkg56tG/v9vUVEpGFSGLGau9QcD7J/sxlKnI0gvsOR73sqzAnO4lr7fTbW4koPoz9Yxuzl5pT9WV0SefHaHsRFqltGRET8R2HEauWF4AiBHQe7aFpkHtsVU15ods9E+LdlYun2A4yYls32wgpCHTZGX9yFP/VPxRYE09GLiEhwUxixUpXbDBvOKNh56Jbeo8aLuMvM+URiW/qtVcQwDN7+cQvj/7saj9egZeMIpgzNJC0lzi/vJyIi8ksKI1Zyl4KnDMKiIX+lue/owasV+6Fph+PPxFoLDpS7efD9ZXy1Kh+A33dN4m/X9CA2wrpp5kVEpOFRGLGSq9hca2bPKnMOkUaJEJN88HslEBpltor4Qfa2/dw9NYedBypwOuw8elkXbjyrtbplRESkzimMWKmswOyGOTRepGUvszvGMMyVeRO7QlijWn1Ln8/gzfmbeH7OWqp8Bq2bRjJlaCbdkmNr9X1ERESqS2HEKp4KqCyG0OPML1JZBOGxtb4YXmGZmwdmLuWbNXsAuKxHc8Zf1Z3ocHXLiIiIdRRGrOIqAU85GF4o3Gjua5Fpdtu4SqF5dwiNqLW3+3lLIfdMy2F3USXOEDtPDOrKkN4p6pYRERHLKYxYxVUCNmD3UvN50/bmQNXyfeZjdPNaeRufz+C17zYy4at1eH0GbZtFMWVoJl2ax9TK64uIiJwuhRErGAaU7jHXnzm0Sm9yL3MQq7sCkjubY0lOU0Gpi/tm5PLD+gIA/pCRzNNXdiMqTP/sIiISOPSpZAV3mXlbrzPqyHiRlj3NOUeimkGjpNN+i4Ub9zFyeg57SlyEh9p58opuXNuzpbplREQk4CiMWMFVYi5+5y6Hsj1gD4WELlBRBI1bmzOyniKvz2DyNxuYOHcdPgM6JDRiyg2ZdEyMrsUfQEREpPYojFih8oB5C++ug60iSd3Mrpuw6NNaDG9PSSX3Ts9lwcZ9AFzbsyXjruhKpFP/zCIiErj0KVXXfF5zfhHn0bf09jK7bmKSwXFqt9nOX1/AvTNyKCh1E+l08PSV3bgq0z8TpomIiNQmhZG65ioxg0d4DOzKMfcl9zQHr0Y2qfHLVXl9TJy7nsnfbsAwoHNSNJOHZtI+oXYnSxMREfEXhZG65i4FrwcKN5mhJCzaHCfiKjG3ayCvqJJ7puewaHMhAEN6t2LsoDMID3Wc5EwREZHAoTBS18oLzQGqh7poWmSYg1lDI8FZ/daMeWv3MOq9pRSWuYlyOhh/dQ8uT6vdGVtFRETqgsJIXapym2Hk6Ft6k3uaM7E2aQf2k7doeLw+XvpyHa9/Z87a2rVFDJOHZtImPsqflYuIiPiNwkhdcpeC52DXTP5Kc1+LnuDzmbOunsTOAxXcMy2HJVv3A3BT39Y8fEkXdcuIiEhQUxipS65ic+2Z/FXmgNVGieagVU/5Sbtovl6VzwPvL+VAuYfo8BCev7oHF3evnSnjRURErKQwUpfKCsxp3g/PutoLqirMlhLn8btZ3FU+np+zhjfnbwYgrWUsrw7JpFXTyLqqWkRExK8URuqKpwIqi82BqseMF6mExm3MSdB+YXthOSOm5bB0+wEA/tS/DaMv7owzxF6HhYuIiPiXwkhdcZWYrSCGFwrNwac0TzdDStivV9CdsyKPB99fSkllFTHhIbx4bRoXdT39NWtEREQCjcJIXXGVAAbszjWfN+1wcGVe2zHzi7iqvIyfvYZ3FmwBIKNVHK8OyaBlY3XLiIhI/aQwUhcMA0r3QEg47Diqi8ZdBpHxEBoOwNZ9ZYyYmsPynUUA/Pl3bXlgYCdCHeqWERGR+kthpC64y8zbep1RsHOxua9lT3Mm1oML432+bBejP1hOqauKxpGhvHRdGud3TrSwaBERkbqhMFIXXCXmLKuecijbC/ZQSOgClSVUOqJ46qPlvPu/bQCcmdqYSUMyaB4bYXHRIiIidUNhpC5UHjDvljnURZPUHXw+NpVHMPytVazOK8Fmg7vObcd9WR0JUbeMiIg0IAoj/ubzmq0hzkjYcbCLJrknH68p4+GFUO4xaBrl5OXB6fyuYzNraxUREbGAwoi/uUrAXQ7hMbArF4BXd3bkpU0GAGe1bcKk6zNIiAm3sEgRERHrKIz4m6vEHKhauAk8ZRQTxcubmmMD7jknhXsGdsdh//WEZyIiIg2Fwoi/VewHRwgrchbSDZjv7UrTCDsTL4ikX7+uoCAiIiINnEZK+llZaTGj5tso22KOF8mLTWP25dCvY3Owa7VdERERhRE/WpNXzOUflDBnfRkZtvUA3Hzx72gW5oOIOGuLExERCRDqpvEDwzCY8fN2xn66EleVjysj1uI0vBCdhD2qqTnfiLOR1WWKiIgEBIWRWlbqquLhD5fz6dJdAJyTEsL4uFWwHnMK+KoKcy0aZ5S1hYqIiAQIhZFatHJXESOm5rC5oAyH3caDAztxR6td2D9ZZh6Q3BM8ldC4jTkJmoiIiCiM1AbDMPjPT1t5atZq3FU+WsSG8+rQDHq2bgKrVsKBreaBzdPBUwFhMZbWKyIiEkgURk5TcaWH0R8sY/byPACyuiTwwjVpNI5ymgfsXmo+Nu0AIWGAzeymEREREUBh5LQs23GAEVNz2FZYTqjDxkO/78ytZ7fBdnQXzO5c8zG5p7l6b2Q8hGq2VRERkUMURk6BYRi8/eMWxv93NR6vQcvGEUwemkl6StwvDzw8BTwte5ozsUbF13W5IiIiAU1hpIaKyj08+P5SvlyVD8Dvuybxt2t6EBsR+uuDC9ZDeQHYQyHhDKgsVheNiIjILyiM1EDOtv2MmJrDzgMVOB12Hrm0Czf1bX1st8zRFv3DfEw8w1y91xmlMCIiIvILCiPV4PMZ/HP+Zv42Zw1VPoPWTSOZPCST7i1jT3xS4SZY8ra53e0ac6Kz2BRwHKcFRUREpAFTGDmJ/WVu7p+5lG/W7AHg0h7Nee6q7kSHnyRUfPss+KqgRSYkdQd3qaaAFxEROQ6Fkd+weEshd0/LYXdRJc4QO2MHncHQ3q1O3C1zyO5lsHymud3zZvC6weFUF42IiMhxKIwch89n8Pr3G3npy3V4fQZt46OYPDSTM1pUc7KyuePMx27XQNN2ULbXvKVX69GIiIj8isLILxSUuhj13lK+X7cXgCvTW/D0H7rTKKyal2rzD7Dha7CHwHkPQ8luqHJDVDOwO/xYuYiISHCyn8pJU6ZMITU1lfDwcPr06cOiRYt+8/iZM2fSuXNnwsPD6d69O7Nnzz6lYv3tp037uGTiD3y/bi/hoXaev7oHLw9Or34QMQz4+glzu+fNZqsIQEi4xouIiIicQI3DyIwZMxg1ahRjx44lOzubtLQ0Bg4cyJ49e457/IIFCxgyZAi33norOTk5XHnllVx55ZWsWLHitIuvLV6fwcSv1zP0jZ/YU+KifUIjPh1xNtedmXLy8SFHWzMLdi6G0Ej43V+P7HdGqotGRETkBGyGYRg1OaFPnz6ceeaZTJ48GQCfz0dKSgp33303o0eP/tXxgwcPpqysjM8///zwvrPOOov09HRef/31ar1ncXExsbGxFBUVERNTu4vM7Smp5L4Zufy4YR8A1/ZsybgruhLprGEPlrcKXusHBWthwANwwWPm/i3zzS6blD5aqVdERBqU6n5+1+gT1+12s2TJEsaMGXN4n91uJysri4ULFx73nIULFzJq1Khj9g0cOJCPP/74hO/jcrlwuVyHnxcXF9ekzGrb9NkL/JSdwwUeLwOdNvq1b0r7RtEw9xRerGS3GUQiGkP/e47stznM8SIKIiIiIsdVozBSUFCA1+slMTHxmP2JiYmsWbPmuOfk5eUd9/i8vLwTvs/48eMZN25cTUqrsQq3l5IlMxnK2iNXYdPBr9Mx4H4IP2oyNGcUhMed5ouKiIjUXwF5N82YMWOOaU0pLi4mJSWlVt8jwukg4sw/8u3WdQxo34wQRy20XETGQ+87jt2X2FV30YiIiPyGGoWR+Ph4HA4H+fn5x+zPz88nKSnpuOckJSXV6HiAsLAwwsLCalLaKel46T109PebKIiIiIj8phrdTeN0OunZsydz5x4ZVOHz+Zg7dy59+/Y97jl9+/Y95niAr7766oTHi4iISMNS426aUaNGMWzYMHr16kXv3r155ZVXKCsr45ZbbgHgpptuIjk5mfHjxwMwcuRIzjnnHF566SUuvfRSpk+fzuLFi/nHP/5Ruz+JiIiIBKUah5HBgwezd+9eHn/8cfLy8khPT2fOnDmHB6lu27YNu/1Ig0u/fv2YOnUqjz76KA8//DAdOnTg448/plu3brX3U4iIiEjQqvE8I1bw5zwjIiIi4h/V/fw+pengRURERGqLwoiIiIhYSmFERERELKUwIiIiIpZSGBERERFLKYyIiIiIpRRGRERExFIKIyIiImIphRERERGxVI2ng7fCoUlii4uLLa5EREREquvQ5/bJJnsPijBSUlICQEpKisWViIiISE2VlJQQGxt7wu8Hxdo0Pp+PXbt2ER0djc1mq7XXLS4uJiUlhe3bt2vNGz/Sda47utZ1Q9e5bug61w1/XmfDMCgpKaFFixbHLKL7S0HRMmK322nZsqXfXj8mJka/6HVA17nu6FrXDV3nuqHrXDf8dZ1/q0XkEA1gFREREUspjIiIiIilGnQYCQsLY+zYsYSFhVldSr2m61x3dK3rhq5z3dB1rhuBcJ2DYgCriIiI1F8NumVERERErKcwIiIiIpZSGBERERFLKYyIiIiIpep9GJkyZQqpqamEh4fTp08fFi1a9JvHz5w5k86dOxMeHk737t2ZPXt2HVUa3Gpynd944w0GDBhA48aNady4MVlZWSf9d5Ejavo7fcj06dOx2WxceeWV/i2wnqjpdT5w4ADDhw+nefPmhIWF0bFjR/39qIaaXudXXnmFTp06ERERQUpKCvfddx+VlZV1VG1w+v777xk0aBAtWrTAZrPx8ccfn/ScefPmkZmZSVhYGO3bt+edd97xb5FGPTZ9+nTD6XQab731lrFy5Urj9ttvN+Li4oz8/PzjHv/jjz8aDofDeP75541Vq1YZjz76qBEaGmosX768jisPLjW9zkOHDjWmTJli5OTkGKtXrzZuvvlmIzY21tixY0cdVx58anqtD9m8ebORnJxsDBgwwLjiiivqptggVtPr7HK5jF69ehmXXHKJMX/+fGPz5s3GvHnzjNzc3DquPLjU9Dq/++67RlhYmPHuu+8amzdvNr744gujefPmxn333VfHlQeX2bNnG4888ojx4YcfGoDx0Ucf/ebxmzZtMiIjI41Ro0YZq1atMl599VXD4XAYc+bM8VuN9TqM9O7d2xg+fPjh516v12jRooUxfvz44x5/3XXXGZdeeukx+/r06WP8+c9/9mudwa6m1/mXqqqqjOjoaONf//qXv0qsN07lWldVVRn9+vUz3nzzTWPYsGEKI9VQ0+v82muvGW3btjXcbnddlVgv1PQ6Dx8+3Dj//POP2Tdq1Cijf//+fq2zPqlOGPnrX/9qdO3a9Zh9gwcPNgYOHOi3uuptN43b7WbJkiVkZWUd3me328nKymLhwoXHPWfhwoXHHA8wcODAEx4vp3adf6m8vByPx0OTJk38VWa9cKrX+sknnyQhIYFbb721LsoMeqdynT/99FP69u3L8OHDSUxMpFu3bjz77LN4vd66KjvonMp17tevH0uWLDnclbNp0yZmz57NJZdcUic1NxRWfBYGxUJ5p6KgoACv10tiYuIx+xMTE1mzZs1xz8nLyzvu8Xl5eX6rM9idynX+pYceeogWLVr86pdfjnUq13r+/Pn885//JDc3tw4qrB9O5Tpv2rSJb775hhtuuIHZs2ezYcMG7rrrLjweD2PHjq2LsoPOqVznoUOHUlBQwNlnn41hGFRVVfGXv/yFhx9+uC5KbjBO9FlYXFxMRUUFERERtf6e9bZlRILDc889x/Tp0/noo48IDw+3upx6paSkhBtvvJE33niD+Ph4q8up13w+HwkJCfzjH/+gZ8+eDB48mEceeYTXX3/d6tLqlXnz5vHss8/y97//nezsbD788ENmzZrFU089ZXVpcprqbctIfHw8DoeD/Pz8Y/bn5+eTlJR03HOSkpJqdLyc2nU+5MUXX+S5557j66+/pkePHv4ss16o6bXeuHEjW7ZsYdCgQYf3+Xw+AEJCQli7di3t2rXzb9FB6FR+p5s3b05oaCgOh+Pwvi5dupCXl4fb7cbpdPq15mB0Ktf5scce48Ybb+S2224DoHv37pSVlXHHHXfwyCOPYLfr/69rw4k+C2NiYvzSKgL1uGXE6XTSs2dP5s6de3ifz+dj7ty59O3b97jn9O3b95jjAb766qsTHi+ndp0Bnn/+eZ566inmzJlDr1696qLUoFfTa925c2eWL19Obm7u4a/LL7+c8847j9zcXFJSUuqy/KBxKr/T/fv3Z8OGDYfDHsC6deto3ry5gsgJnMp1Li8v/1XgOBQADS2zVmss+Sz029DYADB9+nQjLCzMeOedd4xVq1YZd9xxhxEXF2fk5eUZhmEYN954ozF69OjDx//4449GSEiI8eKLLxqrV682xo4dq1t7q6Gm1/m5554znE6n8f777xu7d+8+/FVSUmLVjxA0anqtf0l301RPTa/ztm3bjOjoaGPEiBHG2rVrjc8//9xISEgwnn76aat+hKBQ0+s8duxYIzo62pg2bZqxadMm48svvzTatWtnXHfddVb9CEGhpKTEyMnJMXJycgzAmDBhgpGTk2Ns3brVMAzDGD16tHHjjTcePv7Qrb0PPvigsXr1amPKlCm6tfd0vfrqq0arVq0Mp9Np9O7d2/jpp58Of++cc84xhg0bdszx7733ntGxY0fD6XQaXbt2NWbNmlXHFQenmlzn1q1bG8CvvsaOHVv3hQehmv5OH01hpPpqep0XLFhg9OnTxwgLCzPatm1rPPPMM0ZVVVUdVx18anKdPR6P8cQTTxjt2rUzwsPDjZSUFOOuu+4y9u/fX/eFB5Fvv/32uH9zD13bYcOGGeecc86vzklPTzecTqfRtm1b4+233/ZrjTbDUNuWiIiIWKfejhkRERGR4KAwIiIiIpZSGBERERFLKYyIiIiIpRRGRERExFIKIyIiImIphRERERGxlMKIiIiIWEphRERERCylMCIiIiKWUhgRERERSymMiIiIiKX+P3+WELivEQQDAAAAAElFTkSuQmCC", "text/plain": [ "
" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "from sklearn.metrics import roc_curve, roc_auc_score\n", "\n", "y_scores = model.predict_proba(X_test)\n", "# calculate ROC curve\n", "fpr, tpr, thresholds = roc_curve(y_test, y_scores[:, 1])\n", "sns.lineplot(x=[0, 1], y=[0, 1])\n", "sns.lineplot(x=fpr, y=tpr)" ] }, { "cell_type": "markdown", "id": "4df698f1", "metadata": {}, "source": [ "Using Seaborn again, plot the model's [Receiving Operating Characteristic](https://scikit-learn.org/stable/auto_examples/model_selection/plot_roc.html?highlight=roc) or ROC. ROC curves are often used to get a view of the output of a classifier in terms of its true vs. false positives. \"ROC curves typically feature true positive rate on the Y axis, and false positive rate on the X axis.\" Thus, the steepness of the curve and the space between the midpoint line and the curve matter: you want a curve that quickly heads up and over the line. In our case, there are false positives to start with, and then the line heads up and over properly:\n", "\n", "Finally, use Scikit-learn's [`roc_auc_score` API](https://scikit-learn.org/stable/modules/generated/sklearn.metrics.roc_auc_score.html?highlight=roc_auc#sklearn.metrics.roc_auc_score) to compute the actual 'Area Under the Curve' (AUC):" ] }, { "cell_type": "code", "execution_count": 12, "id": "9de73d87", "metadata": { "attributes": { "classes": [ "code-cell" ], "id": "" } }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "0.6976998904709748\n" ] } ], "source": [ "auc = roc_auc_score(y_test,y_scores[:, 1])\n", "print(auc)" ] }, { "cell_type": "markdown", "id": "2ca41b24", "metadata": {}, "source": [ "The result is `0.6976998904709748`. Given that the AUC ranges from 0 to 1, you want a big score, since a model that is 100% correct in its predictions will have an AUC of 1; in this case, the model is _pretty good_.\n", "\n", "In future lessons on classifications, you will learn how to iterate to improve your model's scores. But for now, congratulations! You've completed these regression sections!" ] }, { "cell_type": "markdown", "id": "9e414511", "metadata": {}, "source": [ "## Your turn! 🚀\n", "\n", "There's a lot more to unpack regarding logistic regression! But the best way to learn is to experiment. Find a dataset that lends itself to this type of analysis and build a model with it. What do you learn? tip: try [Kaggle](https://www.kaggle.com/search?q=logistic+regression+datasets) for interesting datasets.\n", "\n", "Assignment - [Retrying some regression](../../assignments/ml-fundamentals/retrying-some-regression.md)" ] }, { "cell_type": "markdown", "id": "85f4b744", "metadata": {}, "source": [ "## Self study\n", "\n", "Read the first few pages of [this paper from Stanford](https://web.stanford.edu/~jurafsky/slp3/5.pdf) on some practical uses for logistic regression. Think about tasks that are better suited for one or the other type of regression tasks that we have studied up to this point. What would work best?" ] }, { "cell_type": "markdown", "id": "a9080d0e", "metadata": {}, "source": [ "## Acknowledgments\n", "\n", "Thanks to Microsoft for creating the open-source course [ML-For-Beginners](https://github.com/microsoft/ML-For-Beginners). It inspires the majority of the content in this chapter.\n", "\n", "---" ] }, { "cell_type": "markdown", "id": "8662e1c2", "metadata": {}, "source": [ ":::{bibliography}\n", ":filter: docname in docnames\n", ":::" ] } ], "metadata": { "kernelspec": { "display_name": "Python 3 (ipykernel)", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.9.13" } }, "nbformat": 4, "nbformat_minor": 5 }