{ "cells": [ { "cell_type": "code", "execution_count": null, "metadata": { "editable": true, "slideshow": { "slide_type": "" }, "tags": [ "hide-input" ] }, "outputs": [], "source": [ "# Install the necessary dependencies\n", "\n", "import os\n", "import sys\n", "!{sys.executable} -m pip install --quiet pandas scikit-learn numpy matplotlib jupyterlab_myst ipython" ] }, { "cell_type": "markdown", "metadata": { "tags": [ "remove-cell" ] }, "source": [ "---\n", "license:\n", " code: MIT\n", " content: CC-BY-4.0\n", "github: https://github.com/ocademy-ai/machine-learning\n", "venue: By Ocademy\n", "open_access: true\n", "bibliography:\n", " - https://raw.githubusercontent.com/ocademy-ai/machine-learning/main/open-machine-learning-jupyter-book/references.bib\n", "---" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "# More classifiers\n", "\n", "In this section, you will use the dataset you saved from the last section full of balanced, clean data all about cuisines.\n", "\n", "You will use this dataset with a variety of classifiers to _predict a given national cuisine based on a group of ingredients_. While doing so, you'll learn more about some of the ways that algorithms can be leveraged for classification tasks.\n", "\n", "## Exercise - predict a national cuisine\n", "\n", "1\\. Working in this section's [build-classification-models](https://static-1300131294.cos.ap-shanghai.myqcloud.com/assignments/ml-fundamentals/build-classification-models.ipynb) file, import that file along with the Pandas library:" ] }, { "cell_type": "code", "execution_count": 2, "metadata": { "tags": [ "output-scoll" ] }, "outputs": [ { "data": { "text/html": [ "
\n", " | Unnamed: 0 | \n", "cuisine | \n", "almond | \n", "angelica | \n", "anise | \n", "anise_seed | \n", "apple | \n", "apple_brandy | \n", "apricot | \n", "armagnac | \n", "... | \n", "whiskey | \n", "white_bread | \n", "white_wine | \n", "whole_grain_wheat_flour | \n", "wine | \n", "wood | \n", "yam | \n", "yeast | \n", "yogurt | \n", "zucchini | \n", "
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0 | \n", "0 | \n", "indian | \n", "0 | \n", "0 | \n", "0 | \n", "0 | \n", "0 | \n", "0 | \n", "0 | \n", "0 | \n", "... | \n", "0 | \n", "0 | \n", "0 | \n", "0 | \n", "0 | \n", "0 | \n", "0 | \n", "0 | \n", "0 | \n", "0 | \n", "
1 | \n", "1 | \n", "indian | \n", "1 | \n", "0 | \n", "0 | \n", "0 | \n", "0 | \n", "0 | \n", "0 | \n", "0 | \n", "... | \n", "0 | \n", "0 | \n", "0 | \n", "0 | \n", "0 | \n", "0 | \n", "0 | \n", "0 | \n", "0 | \n", "0 | \n", "
2 | \n", "2 | \n", "indian | \n", "0 | \n", "0 | \n", "0 | \n", "0 | \n", "0 | \n", "0 | \n", "0 | \n", "0 | \n", "... | \n", "0 | \n", "0 | \n", "0 | \n", "0 | \n", "0 | \n", "0 | \n", "0 | \n", "0 | \n", "0 | \n", "0 | \n", "
3 | \n", "3 | \n", "indian | \n", "0 | \n", "0 | \n", "0 | \n", "0 | \n", "0 | \n", "0 | \n", "0 | \n", "0 | \n", "... | \n", "0 | \n", "0 | \n", "0 | \n", "0 | \n", "0 | \n", "0 | \n", "0 | \n", "0 | \n", "0 | \n", "0 | \n", "
4 | \n", "4 | \n", "indian | \n", "0 | \n", "0 | \n", "0 | \n", "0 | \n", "0 | \n", "0 | \n", "0 | \n", "0 | \n", "... | \n", "0 | \n", "0 | \n", "0 | \n", "0 | \n", "0 | \n", "0 | \n", "0 | \n", "0 | \n", "1 | \n", "0 | \n", "
5 rows × 382 columns
\n", "\n", " | almond | \n", "angelica | \n", "anise | \n", "anise_seed | \n", "apple | \n", "apple_brandy | \n", "apricot | \n", "armagnac | \n", "artemisia | \n", "artichoke | \n", "... | \n", "whiskey | \n", "white_bread | \n", "white_wine | \n", "whole_grain_wheat_flour | \n", "wine | \n", "wood | \n", "yam | \n", "yeast | \n", "yogurt | \n", "zucchini | \n", "
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0 | \n", "0 | \n", "0 | \n", "0 | \n", "0 | \n", "0 | \n", "0 | \n", "0 | \n", "0 | \n", "0 | \n", "0 | \n", "... | \n", "0 | \n", "0 | \n", "0 | \n", "0 | \n", "0 | \n", "0 | \n", "0 | \n", "0 | \n", "0 | \n", "0 | \n", "
1 | \n", "1 | \n", "0 | \n", "0 | \n", "0 | \n", "0 | \n", "0 | \n", "0 | \n", "0 | \n", "0 | \n", "0 | \n", "... | \n", "0 | \n", "0 | \n", "0 | \n", "0 | \n", "0 | \n", "0 | \n", "0 | \n", "0 | \n", "0 | \n", "0 | \n", "
2 | \n", "0 | \n", "0 | \n", "0 | \n", "0 | \n", "0 | \n", "0 | \n", "0 | \n", "0 | \n", "0 | \n", "0 | \n", "... | \n", "0 | \n", "0 | \n", "0 | \n", "0 | \n", "0 | \n", "0 | \n", "0 | \n", "0 | \n", "0 | \n", "0 | \n", "
3 | \n", "0 | \n", "0 | \n", "0 | \n", "0 | \n", "0 | \n", "0 | \n", "0 | \n", "0 | \n", "0 | \n", "0 | \n", "... | \n", "0 | \n", "0 | \n", "0 | \n", "0 | \n", "0 | \n", "0 | \n", "0 | \n", "0 | \n", "0 | \n", "0 | \n", "
4 | \n", "0 | \n", "0 | \n", "0 | \n", "0 | \n", "0 | \n", "0 | \n", "0 | \n", "0 | \n", "0 | \n", "0 | \n", "... | \n", "0 | \n", "0 | \n", "0 | \n", "0 | \n", "0 | \n", "0 | \n", "0 | \n", "0 | \n", "1 | \n", "0 | \n", "
5 rows × 380 columns
\n", "\n", " | 0 | \n", "
---|---|
indian | \n", "0.583259 | \n", "
japanese | \n", "0.177337 | \n", "
chinese | \n", "0.130770 | \n", "
korean | \n", "0.090274 | \n", "
thai | \n", "0.018360 | \n", "